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Abstract—Anomaly detection in network traffic, both in gen-
eral computer networks and specifically in Internet of Things
(IoT) networks, plays a crucial role in ensuring computer
network security. Over the years, numerous machine learning and
deep learning-based anomaly detection tools have been proposed,
exhibiting high accuracy in identifying anomalous behavior. How-
ever, a significant challenge arises with most machine learning
and deep learning algorithms, as they are often considered black-
box models that lack interpretability. Consequently, explaining
the reasons behind certain network behaviors being labeled as
anomalous becomes a difficult task. To overcome this issue, we
evaluate the combination of anomaly detectors and eXplainable
Artificial Intelligence (XAI) algorithms in IoT traffic anomaly
detection. Our research results demonstrate that XAI algorithms
can consistently identify the most impactful network features of
security anomalies. More specifically, (1) SHAP algorithm is the
most robust and reliable in the four tested XAI algorithms for
four types of supervised/unsupervised anomaly detection models,
independent of two datasets including different anomalies. (2)
Image-based XAI algorithms are not suitable for explainability
of network anomaly detection.

Index Terms—XAI, IoT, anomaly detection

I. INTRODUCTION

There has been a notable surge in the frequency and severity
of attacks directed at IoT networks and devices, causing signif-
icant financial loss [17], [19]. Security methods are not keep-
ing up with specific vulnerabilities of IoT networks, which are
increasing fast together with the number of Internet-connected
IoT devices. Another concern lies in how IoT devices affect
people’s lives directly, such as sensors in medical equipment
and control systems of self-driving car, and cannot afford to
fail due to operational anomalies. Therefore, besides security
enhancement, anomaly detection (AD) and its mitigation are
primary concerns in IoT systems.

Many anomaly detectors are developed and integrated with
IoT network devices. These anomaly detectors range from sim-
ple algorithms, such as rule-based detection, to complicated
algorithms, such as machine-learning behavioral analysis, peer
group analysis, and deep learning to improve accuracy in
anomaly classification.

Most anomaly detectors do not provide network adminis-
trators or end-users with a direct and clear explanation for the
decision to classify network traffic as benign or anomalous.
There are two exceptions: rule-based anomaly detectors, which
allow the users to set up their own rules for classification, and

Fig. 1. Pipeline of anomaly detection and XAI-based explanation of results

detectors using the decision tree algorithm, which explains
the importance of the features used in the prediction through
the leaves themselves. However, more insight is needed for
advanced detectors that have begun to emerge recently, making
use of black-box, more complex deep learning models, such
as CNN, DNN, and GNN.

To overcome this black-box approach, XAI algorithms pro-
vide users with interpretable and understandable explanations
for predictions made by AI models. However, it is important
to evaluate the explanatory power of these algorithms, partic-
ularly with regard to their applicability in detecting anomalies
in network traffic and IoT traffic.

Our research focuses on evaluating XAI algorithms in AD
for IoT traffic, aiming to provide transparent and interpretable
detection results. With a focus on explainability, our work
bridges the gap between high-performing models and com-
prehensible decision-making, enhancing the overall reliability
and applicability of AD in real-world scenarios. The overview
of our processing pipeline is shown in Fig. 1 (The details are
discussed in Sec. III).

The contribution of the paper is as follows:

1) We evaluate the explainability of four different XAI
algorithms applied to four supervised/unsupervised AD
models.

2) We demonstrate that SHAP algorithm is the most robust
and reliable among them with two IoT traffic datasets
that include different anomalies. In contrast, image-
based XAI algorithms output different explanations. We
also show that XAI algorithms optimized to anomaly
detector models worked in a reasonable time.



II. RELATED WORK

With the advancement of AI, deep learning models based
on neural networks, which know as black-box models became
popular but posed a significant challenge in terms of inter-
pretation. XAI offers as a remedy for addressing the issue of
explanation in these black box models.

XAI can be divided into global explanation and local
explanation [7]. Global explanation explains the factors that
influence the model’s results, determining which role a fea-
ture plays in the model’s predicted outcomes. In contrast,
local explanation considers only one input data point and
identifies the factors that influence its prediction process.
Another classification of XAI algorithms is based on the
methods used to provide explanations. One approach is to
explain by simplification, turning the original model into
interpretable models. The most popular method in this ap-
proach is the Local Interpretable Model-Agnostic Explanations
(LIME) [12], which uses a regression model to account for
a neighborhood dataset generated from the data point under
consideration. Another class of methods, such as SHApley
Additive exPlanations (SHAP) [10] and Saliency [3], focus
on explaining the relevance of features. They use scores to
evaluate the contribution of each feature to the prediction
outcome. The visualization methods like Gradient-weighted
Class Activation Mapping (Grad-CAM) [14], Guided Back-
propagation (GBP) [18] are commonly employed to interpret
models using image datasets, highlighting influential points
affecting predictions and enabling an intuitive understanding
of the decision-making process. Table II lists a summary of
four XAI algorithms.

XAI algorithms are used for interpretation in many different
fields. For AD explanation, two XAI algorithms (LIME and
SHAP) are applied to detect malicious domains in DNS
queries [1]. These two XAI algorithms are also used to
interpret LSTM models in the ML crypto miner detector [6].
SHAP is used to explain the XGBoost model in the network
intruder detection [2], AE model in DDOS attack detection [5],
sensor behavior [4], and traffic classification of mobile IoT
devices model [11], selected importance feature for ANN AD
model [13], enhance trust of IDS for IoT network [16].

While these studies have applied XAI algorithms to explain
various algorithms in different domains, there has been a
notable lack of evaluation regarding their explainability in
the context of network anomaly detection. Our research aims
to fill this void by conducting a thorough assessment of the
explanatory capabilities of four XAI algorithms, representing
distinct explanatory methods in four supervised and unsu-
pervised network anomaly detection algorithms. Through this
investigation, we seek to shed light on the effectiveness and
interpretability of these XAI techniques in the critical task of
network anomaly detection.

III. METHODOLOGY

Fig. 1 illustrates our AD and interpretation procedure. We
begin with two input datasets in the form of pcap network data
extraction files. These datasets undergo a preprocessing phase

that involves feature extraction, resulting in the collection
of 25 features. Additionally, we conduct data cleaning to
handle error data points and encode the data appropriately.
Subsequently, the processed data is divided into two sets: a
training set and a test set, with a ratio of 70/30. The AD
models use the training set for training and evaluate the model
accuracy by employing the test set. This evaluation yields
important parameters related to the performance of AD includ-
ing accuracy, precision, recall, and F1 score. Simultaneously,
we use the XAI algorithms we have chosen, the AD model,
and the test set for the interpretation process. This enables us
to obtain explanations for prediction results produced by the
models. This pipeline processing is implemented and evaluated
on SIURU [9], a framework for IoT-traffic AD.

A. Dataset

We conduct an assessment of two distinct datasets:
MQTTset [20]: It specifically focuses on MQTT commu-

nications and provides a comprehensive collection of both
benign traffic patterns and deliberate attacks aimed at the
targeted MQTT network. The dataset encompasses various at-
tack techniques, including Flooding, Denial of Service, MQTT
Publish Flood, SlowITe, Malformed Data, and Brute Force
Authentication. To conduct our analysis, we extracted a total of
70,983 benign traffic packets and 130,223 MalariaDoS traffic
packets from this MQTTset dataset.

CIC IDS 2017 [15]: It consists of benign network traffic
as well as many recent and common attacks from replications
of real-world scenarios. Its data format is raw pcap files
(used in this work) and pre-processed flow feature files gener-
ated with CICFlowMeter. The dataset includes benign traffic
based on HTTP, HTTPS, FTP, SSH, and email protocols.
Additionally, it incorporates various deployed attacks, such as
Brute Force FTP, Brute Force SSH, DoS, Heartbleed, Web
Attack, Infiltration, Botnet, and DDoS. For this dataset, we
extracted 120,302 benign traffic packets and 122,094 DDoS
traffic packets captured on Thursday, July 6, 2017.

We extracted raw packet data from the pcap files and
obtained 25 distinct empirical features. These features are
categorized into three primary groups: Packet Features (de-
noted P), Host Features (denoted H), and Flow Features
(denoted F). The Packet Features encompass characteristics
that are specific to each individual packet. The Host Features
capture attributes that are associated with each host in the
network. Finally, the Flow Features involve parameters that
are calculated for individual network flows, characterized by
the five-tuple (source IP address, source port, destination IP
address, destination port, protocol). Table I provides a detailed
breakdown of the 25 extracted features utilized in our analysis.

B. Anomaly Detection Methods

In our study, we conducted a comprehensive evaluation of
four model classifiers, encompassing both supervised and un-
supervised learning algorithms. Here, we focus on the binary
classification model (i.e., the output is benign or anomalous).



Supervised learning: We opted for Random Forest (RF)
and Convolutional Neural Network (CNN) as our ML methods
for AD. RF is a popular ensemble learning algorithm that
combines multiple decision trees to make accurate predictions.
CNN is a deep learning architecture well-suited for analyzing
structured data such as images or sequential data.

Unsupervised learning: We employed Isolation Forest (IF)
and Auto Encoder (AE). IF is a tree-based AD algorithm that
isolates anomalies by exploiting their distinctive attributes. AE
is a neural network architecture used for AD based on the
reconstruction error. We evaluate the effectiveness of these
models in AD as well as the applicability of XAI algorithms
to different classification algorithms.

For supervised AD, we employed the entire dataset, in-
cluding both benign and anomalous instances, to train and
test the classifiers. In contrast, for unsupervised AD, we
exclusively utilized benign traffic data for training the IF and
AE models. By focusing exclusively on benign traffic data
during training, the unsupervised classifiers can capture the
underlying structure of benign instances, enabling them to
identify deviations or anomalies during the testing phase.

The evaluation was conducted on a M1 Mac with 16GB of
RAM. By evaluating these algorithms on diverse datasets and
utilizing a reliable computing environment, we aimed to gain
insights into their effectiveness and suitability for AD tasks.

TABLE I
FEATURE LIST

Index Feature Description
#1 P[Protocol] packet protocol (TCP/UDP)
#2 P[IP Header Size] IP header size (bytes)
#3 P[TCP CWR Flag] CWR flag in TCP packet
#4 P[TCP ECE Flag] ECE flag in TCP packet
#5 P[TCP URG Flag] URG flag in TCP packet
#6 P[TCP ACK Flag] ACK flag in TCP packet
#7 P[TCP PSH Flag] PSH flag in TCP packet
#8 P[TCP RST Flag] RST flag in TCP packet
#9 P[TCP SYN Flag] SYN flag in TCP packet
#10 P[TCP FIN Flag] FIN flag in TCP packet
#11 H[Received Packet Count] # packets from same IP
#12 H[Sum Rcvd Hdr Size] sum hdr sizes same IP (bytes)
#13 H[Avg Received Hdr Size] avg hdr size (bytes)
#14 H[Sent Packet Count] # packets to IP address
#15 H[Sum Sent Hdr Size] sum hdr sizes (bytes)
#16 H[Avg Sent Hdr Size] avg hdr size (bytes)
#17 H[Last InterArrival Time] time since last packet (µs)
#18 H[Avg InterArrival Time] avg time btw packets(µs)
#19 H[Connection Duration] time since first packet (µs)
#20 F[Received Packet Count] # packets in flow
#21 F[Sum Header Size] sum header sizes (bytes)
#22 F[Avg Header Size] avg header size (bytes)
#23 F[Last InterArrival Time] time since last packet (µs)
#24 F[Avg InterArrival Time] avg time btw packets (µs)
#25 F[Connection Duration] time since first packet (µs)

C. Explainable AI

We conducted an extensive assessment of the explainability
of AD algorithms in network traffic, employing four distinct
XAI techniques: LIME, SHAP, Grad-CAM, and GBP. These
selected algorithms include both local and global explanations,
catering to various data formats such as tabular, image, and

TABLE II
XAI SURVEY

Algorithm Mechanism Dataset type Explanation

LIME [12]
Explanation by
Simplification,

Perturbation-based

Tabular
Image
Text

Local

SHAP [10]
Feature relevance

explanation,
Perturbation-based

Tabular
Image

Global
Local

Grad-CAM [14]
Visual explanations,

Gradient-based,
Activation map

Image Local

GBP [18]
Visual explanations,

Gradient-based,
Gradident

Image Local

time-series data. To facilitate a comprehensive comparison
of their functionalities, Table II presents an overview of the
operational mechanisms and the types of supported data.

LIME: It is particularly effective in providing local expla-
nations, explaining the model’s decision-making process at the
individual instance level.

In our study, we leveraged LIME to explain the output of
RF, CNN, IF and AE models operating on a tabular dataset.
Because LIME is a local explanatory model, to obtain the
complete list of globally important features, we randomly
selected 1000 points in the dataset and applied LIME to each
point, calculating the results average to produce a complete
list of important features. However, LIME faces challenges in
interpreting IF and AE results due to its reliance on algorithms
with probability scores. To solve this problem, for IF, we
convert anomaly scores to probability scores, allowing LIME
to be used effectively for interpretation, similar to Ref. [8]. AE
makes calculating predicted probabilities difficult. Instead, we
can only generate probability scores [1,0] and [0,1] for the
labels: benign and anomalous.

SHAP: It delivers comprehensive interpretability for ma-
chine learning models. Its foundation lies in cooperative game
theory, specifically Shapley values, which effectively quantify
the contribution of each feature during the prediction process.
SHAP provides a diverse and optimized range of explainers
for different algorithms and dataset types. When working with
tree-based models such as RFs, IFs, SHAP provides Tree
Explainer optimized for tree-based models. The Tree Explainer
exploits the characteristics of tree structure, helping to increase
the ability to calculate and process complex tree models. We
used Tree Explainer to obtain insightful explanations for our
RFs and IFs, unveiling the importance of individual features
in these models’ decision-making processes. In the case of
CNN, SHAP offers two types of optimized explainers: Deep
Explainer and Gradient Explainer. The Deep Explainer uses an
enhanced version of DeepLift to calculate SHAP value while
the Gradient Explainer uses expected gradients. However, due
to compatibility issues with TensorFlow lib, we focused our
evaluation solely on Gradient Explainer. Furthermore, as our
dataset was not in image format, we converted the input and
output to extract the critical features. For the AE model, which
is used in unsupervised learning, we relied on Kernel Explainer



provided by SHAP. Kernel Explainer is the core of SHAP,
acting as a model agnostic when used to explain any algorithm
output. The limitation of Kernel Explainer is computationally
expensive, especially with complex models or data sets.

Grad-CAM and GBP: They are techniques commonly
used for interpreting CNN with image datasets. GradCAM
highlights important image regions contributing to predictions
in CNN, while GBP visualizes input features with signifi-
cant influence on the model’s output. Since Grad-CAM and
GBP are XAI algorithms designed for image datasets, we
also performed input and output conversions. SHAP Gradient
Explainer, SHAP Kernel Explainer, GradCAM, and GBP all
function as local explainers, so we evaluated 1000 data points
and calculated the mean values to detect feature importance.

In order to assess the explainability of the algorithms, we
examined the top important features extracted from each al-
gorithm and compared them. To determine them, we extracted
the importance of features 100 times and calculated the mean
value for each feature.

To evaluate the explanatory capabilities of the XAI algo-
rithms, we conducted several comparisons. Firstly, we com-
pared the consistency of interpretation results by examining
the top important feature provided by various XAI algorithms.
Within the same AD model, we used RF feature importance as
the baseline and compared it with the top important features
extracted from LIME and SHAP algorithms. This analysis
allowed us to assess the consistency of interpretation results
across different XAI methods.

Secondly, we compared the results of XAI algorithms across
different AD models to understand the impact of features.
Specifically, we analyzed the results on four prediction models
with SHAP: RF, CNN, IF, and AE.

Lastly, we expanded our analysis by comparing the XAI
results on two distinct datasets: MQTTset and CIC IDS 2017.
This enabled us to evaluate the consistency and effectiveness
of XAI methods across different data environments.

In terms of applicability and explanation to users, we
considered various factors for comparison, including supported
data type and the number of algorithms supported by each XAI
method. By considering these factors, we aimed to provide
insights into the suitability and practicality of different XAI
methods for user-oriented explanations.

IV. RESULTS

A. Anomaly detection performance

Table III summarises the AD performance of the models
in the two datasets. It is evident that our supervised learning
models exhibit exceptional accuracy (99% accuracy) in both
datasets. However, the performance of the unsupervised learn-
ing algorithms, IF and AE, is relatively lower, with accuracies
of 92% and 94% in the MQTTset dataset, and 85% and 82%
in the CIC IDS 2017 dataset, respectively. The discrepancy in
performance can be attributed to the higher complexity and
diversity of traffic present in the CIC IDS 2017 dataset as
compared to the MQTTset dataset. These results show that

TABLE III
PERFORMANCE OF ANOMALY DETECTION

AD Dataset Accurancy Precision Recall F1 score
RF MQTTset 0.999 0.999 0.999 0.999

CNN MQTTset 0.996 0.996 0.996 0.996
IF MQTTset 0.922 0.932 0.898 0.911
AE MQTTset 0.946 0.961 0.924 0.938
RF CIC2017 0.999 0.999 0.999 0.999

CNN CIC2017 0.992 0.992 0.992 0.992
IF CIC2017 0.855 0.864 0.856 0.854
AE CIC2017 0.832 0.857 0.831 0.828

the learned models have enough performance for the AD and
are ready for applying the XAI algorithms to them.

B. Explainability

Baseline behavior: We apply XAI algorithms to learned
AD models. We denote the result of XAI (Y ) for the model
X as R(X/Y ), e.g. R(RF/LIME) is the result of LIME
for the RF model. We use R(RF/RF) as the baseline of
the comparison, because the learned RF model outputs the
important features without extra XAI algorithms. Table IV lists
the top six important features for each XAI algorithm applied
to the learned models.
R(RF/RF) outputs connection duration related features (25,

19, 16, 23, 11, 12) as the important features for MQTT dataset.
Considering the type of anomalies (MalariaDoS) in the dataset,
we conclude that the results of RF are reasonable because this
anomalous traffic has shorter connection duration time than
that of benign traffic.

Also, the header size related features (11, 12) are important
in CIC IDS 2017 data. It includes Slowloris attack in which
malicious actors try to open numerous connections to the
target web server and keep them open as long as possible,
similar to benign traffic. To keep the connection, the attacker
sends an incomplete request which does not include the
terminating newline sequence. The attacker sends additional
header lines periodically to keep the connection alive, but
never sends the terminating newline sequence. This leads to
the headers for each connection growing larger and larger as
the attack progresses. As a result, the sum header size for each
connection in a Slowloris attack can become much larger than
the header size in a benign HTTP request.

In summary, the explainability of the baseline results is
intuitive and reasonable.

Comparison with baseline: We first show that LIME
and SHAP are consistent with RF for the RF model. The
color in the table represents the top features in R(RF/RF)
as the reference. We visually confirm that R(RF/LIME) and
R(RF/SHAP) for the two datasets are mostly consistent with
the baseline, R(RF/RF). Thus, the explainability of LIME and
SHAP is enough for our problem.

Next, we check the explainability of the neural net-
work model. We still observe the consistency of LIME
R(CNN/LIME) and SHAP R(CNN/SHAP) in this case.
However, R(CNN/GradCAM) and R(CNN/GBP) behave dif-
ferently. A plausible reason of this is related to the type



TABLE IV
TOP SIX IMPORTANT FEATURES IN DIFFERENT DATASETS. TOP: MQTTSET DATASET. BOTTOM: CIC IDS 2017 DATASET

MQTT
Random Forest CNN Isolation Forest Auto EncoderTop feature Random Forest LIME SHAP LIME SHAP Grad CAM GBP LIME SHAP LIME SHAP

1 #25 #19 #19 #9 #19 #10 #19 #24 #11 #14 #19
2 #19 #25 #25 #19 #12 #21 #21 #17 #12 #15 #25
3 #16 #18 #16 #20 #11 #20 #15 #23 #25 #11 #15
4 #23 #12 #12 #12 #20 #25 #14 #18 #15 #12 #14
5 #11 #11 #11 #10 #14 #19 #7 #11 #19 #21 #11
6 #12 #9 #18 #11 #21 #15 #20 #12 #14 #20 #12

Spearman’s rho 1.0000 0.8046 0.9931 0.5581 0.6360 0.2212 0.4462 0.6555 0.9064 0.8066 0.8787

CIC IDS 2017
Random Forest CNN Isolation Forest Auto EncoderTop feature Random Forest LIME SHAP LIME SHAP Grad CAM GBP LIME SHAP LIME SHAP

1 #12 #15 #12 #19 #19 #25 #12 #9 #11 #12 #11
2 #11 #12 #16 #13 #12 #20 #11 #10 #12 #11 #12
3 #19 #11 #11 #12 #11 #21 #18 #8 #15 #8 #14
4 #18 #16 #15 #20 #14 #23 #6 #7 #14 #1 #15
5 #16 #13 #19 #8 #15 #24 #7 #1 #23 #14 #24
6 #15 #14 #18 #11 #20 #1 #13 #23 #7 #15 #19

Spearman’s rho 1.0000 0.8573 0.9888 0.6851 0.7491 0.2679 0.5047 0.1921 0.4553 0.4735 0.7429

of XAI algorithms. GradCAM and GBP are developed for
neural network models but their main target is image pro-
cessing/analysis. Therefore, when we attempted to use these
algorithms with tabular data, their interpretability was limited.
Furthermore, GradCAM is particularly effective when working
with models containing multiple convolutional layers, as it
utilizes gradients from the final convolutional layer. In con-
trast, our CNN model only incorporates one convolutional
layer, which makes the interpretation results of GradCAM
less efficient for our specific model. By manually checking
the output of them, we find simple horizontal bands that
correspond to the situation that a few features are highlighted
over all the time steps. In other words, the time evolution of
traffic features is too simple compared to real-world images.

Furthermore, we check the explainability of the unsuper-
vised models. We see that SHAP outputs the consistent results
as in R(IF/SHAP) and R(AE/SHAP), though R(IF/LIME)
and R(AE/LIME) are different from the baseline. LIME’s
deviation is influenced by the bias in probability scores during
the conversion of anomaly scores to probability scores on
the IF algorithm and the generation of label-based probability
scores on the AE algorithm.

Our visual analysis demonstrates the SHAP is robust against
all the types of AD models. Also, we obtain consistent
results in two different datasets though the important features
themselves are different. LIME offers less algorithmic support,
and less stable explanations compared to SHAP. This is due
to LIME’s local explanation, making it less effective than
SHAP’s global approach. Besides, forcing models such as
IF and AE to use probability to apply LIME causes the
interpretation results on these algorithms to have many bias.
Thus, our results suggest that XAI algorithms, especially
SHAP, are reliable and robust in the context of the network
AD.

Quantitative analysis: We further quantitatively examine

this similarity with Spearmann’s rank correlation coefficients.
Spearmann’s rank correlation coefficient is a metric to show
the correlation of ranks in two datasets. A larger value of
the coefficient (close to 1.0) indicates a stronger positive
correlation, and a smaller value close to 0.0 represents non-
correlation. The bottom row of Table IV lists Spearmann’s
correlation coefficient between R(RF/RF) and others. We con-
firm that SHAP shows the highest correlation coefficient for
the learned models, LIME has a lower correlation coefficient
and seems to be unstable across all algorithms, and the XAI
algorithms for images are less similar to the baseline.

C. Processing costs

We confirm that each XAI algorithm outputs the expla-
nation in a reasonable time. Table V shows that the XAI
algorithms have been optimized for each type of algorithm
without consuming too much processing time. However, with
unoptimized algorithms, their processing time is relatively
large. Specifically, with SHAP, to calculate the contribution
of features, those features are set to missing and will be re-
simulated by taking the features in the background dataset.
With SHAP Kernel Explainer, the entire background data
set is used, so the computational complexity scales linearly
with the number of samples present in the background data.
Meanwhile, SHAP Tree Explainer takes advantage of tree
architecture to represent the background distribution and calcu-
late the SHAP value. SHAP Gradient Explainer only randomly
samples values from the background data set while calculating
the expected gradient. Similarly, LIME is unoptimized to
explain complex algorithms like AE. Thus, their processing
time is up to hours for the MQTTset dataset. Our results
clearly suggest that optimized XAI algorithms are one of the
criteria for real usage.



TABLE V
PROCESSING TIME FOR ONE ROUND (S) (MQTT DATASET)

RF/RF RF/LIME RF/SHAP CNN/LIME CNN/SHAP CNN/GradCAM CNN/GBP IF/LIME IF/SHAP AE/LIME AE/SHAP
– 74.31 38.97 4.22 10.29 1.31 0.04 2.73 82.11 11707.71 19933.76

V. DISCUSSION/LIMITATION

Explainability: R(RF/RF) is reliable for the two datasets,
by considering the malicious behaviors. Thus, we can assume
that behavior similar to R(RF/RF) is interpreted as reliable as
the explanation. Of course, there is a possibility that each AD
model learned different features in more complicated cases. A
more detailed analysis could be future work.

Extend to multi-class classifiers: Our analysis is currently
based on binary classification of IoT traffic AD with specific
anomalies. We will extend our analysis to muli-class classifi-
cation with more variety of anomalous scenarios.

Suitable XAI for neural network model: Grad-CAM and
GBP do not work well in our context, though SHAP and LIME
are robust for the neural network based models. We will further
investigate or develop a more suitable XAI algorithm for the
neural network based anomaly detectors.

More explainability: The important features are useful in-
formation to infer what is happening in the network. However,
there is still a gap between this explainability and network
control. We should further develop more human understand-
able interpretations, e.g., for security controllers in IoT traffic
management.

Optimize XAI algorithm: While the explainability of XAI
algorithms on RF, CNN, and IF is reasonable, there remains
a significant challenge in explaining performance on complex
models such as AE.

VI. CONCLUSION

We demonstrated that the insights obtained through XAI
techniques can play a crucial role in understanding the under-
lying changes in network traffic that distinguish anomalous
and potentially malicious connections from benign ones. By
employing appropriate XAI algorithms such as SHAP and
LIME, it is possible to gain valuable knowledge about the
patterns in anomalous network traffic. Our results show that
XAI can consistently interpret complex relationships between
features and anomalies over different AD methods, allowing us
to pinpoint specific indicators that differentiate benign traffic
from anomalous behavior. These can lead to refined detection
algorithms, additional security measures and overall robustness
against different types of attacks.
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