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Abstract—The demand for greater modularity and scalability
within software architecture drives the transition from monolithic
systems to microservices. This paper delves into decomposing a
real-world monolithic Manufacturing Execution System (MES)
into microservices, focusing on semantic analysis using word
encodings applied to 326 OpenAPI endpoints. We studied the
results of a machine learning approach in comparison to re-
sults obtained from human experts. We evaluated the impact
of encoding types, features and algorithms on segmentation
results. We compared different feature combinations, and classic
encodings such as TF-IDF, word2vec and fastText embeddings
with openAI embeddings and custom-trained embeddings, and
also non-centroid algorithms with k-means. In our real-world
scenario, we have found that the best combinations produce good
results with ARI and NMI scores at 0.75 and above compared
to human experts’ ground truth. However, the low silhouette
scores below 0.3 in the same runs indicate the limitations of the
method. The method facilitates the decomposition process but
requires human-driven configuration and verification of results.

Index Terms—Microservices, Decomposition, OpenAPI, Se-
mantic Analysis, Manufacturing Execution System

I. INTRODUCTION

Microservice architectures have become a widely popular
architecture style for many applications. At its core, a mi-
croservice architecture decomposes a software application into
small, independent services that communicate with each other
through lightweight mechanisms such as HTTP RESTful APIs.
Each service is responsible for a distinct functionality and
can be developed, deployed, and scaled independently. This
stands in contrast to the monolithic architectural style where
an application is built as a single, indivisible unit [1]. The
surge in popularity can be attributed to several advantages
over traditional monolithic designs. Microservice architectures
promote modularity, scalability of individual components, im-
proved maintainability, and faster development cycles. They
also enable teams to work on different services simultane-
ously, which boosts productivity. Furthermore, microservice
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architectures enable resilience. The failure of one service does
not necessarily result in the collapse of the whole system [2].

Therefore, much attention has been given to breaking down
monolithic applications into a microservice architecture in the
software engineering research community [3]. A particular
area of interest has been semantic methods for decomposing
monoliths based on artefacts such as openAPI specifications or
software engineering models [4]. The results of the techniques
are promising. However, the research typically focuses on
standard examples for consistency and comparability. The
effectiveness of semantic approaches in the complexity of
real scenarios has rarely been investigated. The paper aims
to close this gap by examining the performance of a semantic
OpenAPI-based decomposition technique in a real-world sce-
nario, specifically a Manufacturing Execution System (MES).

The paper is structured as follows: Section 2 explores
related work covering microservice architectures in MES and
the existing work on semantic microservice decomposition
techniques. Section 3 introduces the real-world case study,
and section 4 describes our experiment design. Our findings
are detailed in Section 5. Section 6 offers a comprehensive
discussion of the results and their implications. The paper con-
cludes with Section 7, where we summarize primary findings
and suggest future research directions.

II. RELATED WORK

Techniques for microservice decomposition can be distin-
guished by the type of input the technique is based on.
Static analysis uses the application source code to propose
microservice candidates. For example, Kamimura et al. [5]
created a method for extracting microservice candidates from
source code using a clustering algorithm. Dynamic analysis
uses the application’s behavior in a real-world performance
for the decomposition analysis. An example is an approach
analyzing the access logs of monolithic applications through
unsupervised machine learning [6]. Using software engineer-
ing artefacts instead of the source code is a special variant
of static analysis. It leverages API descriptions, data flow
diagrams, class diagrams, or other models for the analysis



to suggest microservice candidates. This has the advantage
that they can be used before the application is coded. Gysel
et al. created Service Cutter, a framework for microservice
decomposition using domain models and use cases to extract
coupling information, represented as weighted graphs to allo-
cate closely related services [7]. They then utilized clustering
algorithms to identify microservice candidates. Baresi et al.
proposed a technique that uses the semantic similarity between
Open API operations [8]. They used schema.org as a vocab-
ulary reference to map OpenAPI specifications and calculate
the distributional similarity between the operation words. As a
result, OpenAPI specifications that were semantically similar
were grouped together to create candidate microservices. Al-
Debagy et al. also leverage the OpenAPI specifications for
finding similar words in the operation names [9]. They use
word embedding models such as fastText to find semantic
similarities between operation names and group semantically
similar operation names in a microservice candidate through
hierarchical clustering. They extended their work evaluating
the microservice candidates with evaluation cohesion and
complexity metrics to further fine-tune the microservice de-
composition [10]. They evaluated their algorithm through
two standard examples of microservice applications (Kanban
Dashboard and Money Transfer), which also serve as a test for
[8]. However, an investigation of its effectiveness on a real-
world system and the utility of the approach is yet missing.
Furthermore, it is not yet clear what combination of feature,
encoding, and embedding will result in successful outcomes
as only Affinity Propagation algorithm, a single feature and
one fastText and word2vec embedding are considered.

To address this gap, our study was guided by the following
research questions:
Q1. How well does the approach perform in a real-world

scenario compared to human software engineering ex-
perts?

Q2. Which attributes in the OpenAPI specification yield the
most effective results?

Q3. Does the way we encode features affect the results?
Q4. Does the incorporation of a domain-specific word em-

bedding enhance the results?
Q5. How do clustering algorithms differ in terms of mi-

croservice candidates’ quality?

III. REAL-WORLD CASE: DECOMPOSITION OF A
MANUFACTURING EXECUTION SYSTEM

Our study aims to investigate our research questions by
decomposing a monolithic real-world MES into microservice
candidates. A MES is software that connects plant opera-
tions with enterprise systems, allowing real-time visibility
into production processes. It serves as a centralized platform
that manages and monitors work-in-progress on a factory
floor, facilitating optimized production, enhanced scheduling,
efficient resource allocation, and superior product quality. The
MES offers a wide range of functionalities, including product
lifecycle management, process control, data analysis, quality
control, and more. The MES building the case for evaluating

Fig. 1. Excerpt from the Xetics REST API

the microservice decomposition technique is the Xetics Lean
MES. It is a state-of-the-art MES emphasizing production
management flexibility and efficiency. It is designed primarily
for assembly shops but can also be used in other production
areas. The system offers a number of functionalities to support
shop floor operations, which are listed and described in Table



I. The system is built as a monolith. However, it offers an
extensive REST API that includes CRUD and other state
change operations for all significant entities related to the
system’s functionalities. Some of these entities include orders,
production lots, production plans, shifts, media, and material
stock. The REST API is described according to the OpenAPI
specification including fully specified endpoints, with opera-
tion description, input parameters, and response. A part of the
API as displayed in Swagger can be seen Figure 1. The API
includes over 326 endpoints, which are grouped by 58 tags
(e.g., ”alarm-type-controller”).

TABLE I
DESCRIPTION XETICS LEAN MES FUNCTIONALITIES

Functionality Description
production process
plan modeling

Modelling of the sequence of steps and pro-
cess parameters required for a product to be
completed.

production order man-
agement

Creation, release of orders for a specific prod-
uct, and monitoring of the production process.

production execution Tracking of each resource material and process
parameter used for creating a product along the
process plan.

skill management Management of available skill resources and
enforcing of skill requirements required by the
process.

shift management Rostering of labor shifts for the production
plant.

production planning Scheduling of production orders under consid-
eration of maximum resource utilization and
order due dates.

equipment integration Collection of data from equipment at different
manufacturing stations.

material management Stock management of consumable material re-
quired in the production process.

document management Storage and versioning of documents required
in the production process such as Standard
Operation Procedures or other manuals.

IV. EXPERIMENT DESIGN

To address our research questions, we developed an exper-
iment setup enabling the comparison between microservice
decomposition by human experts and the machine learning-
driven approach. Figure 2 illustrates this setup.

Initially, three software engineers established a ground truth,
collaboratively developing a set of candidate microservices.
This collaboration aimed to minimize the influence of in-
dividual biases. The human experts relied on a Swagger
visualization of the OpenAPI to scrutinize various attributes,
subsequently grouping the services in Excel using their unique
operation ID.

For the machine learning approach, our first step involved
parsing the API to extract features. These 36 features are de-
tailed in Table II. Some of the API endpoints specify multiple
parameters (up to 11) or responses (up to 4). These are set
to none if an endpoint has fewer parameters or responses
specified.

Each feature underwent a cleaning process to eliminate su-
perfluous whitespaces, special characters, typos, and language
errors. This step was crucial, particularly for the subsequent

Fig. 2. Experiment Design Overview

TABLE II
DESCRIPTION OF FEATURES IN THE OPENAPI SPECIFICATION

Feature Description
operation id The id uniquely identifying the endpoint.
tag Descriptor categorizing the endpoint. In case of

Xetics MES this is the controller class name
for the endpoint.

path Path for accessing the endpoint.
method Http method type for the endpoint (e.g. PUT,

GET, DELETE...).
summary Descriptive summary of the purpose and con-

sequences of the API.
parameter 1-11 Name of parameters in query.
parameter 1-11
description

Description of parameters in query.

request body Object in request body of the endpoint.
response 1-4 Response codes for the endpoint request.
response 1-4 descrip-
tion

Description of the response received for the
code.

encoding of natural language using word embeddings and term
frequency–inverse document frequency (TF-IDF) techniques.
We used word embeddings outlined in Table III. In addition
to the readily available embeddings, we incorporated two
custom embeddings by training the text of two MES domain-
specific standards (VDI5600 and IEC 62264) with word2Vec
and fastText.

We also varied our encoding approach to investigate poten-
tial influences on the decomposition outcome: one involved
averaging the encoding into a single feature (see equation
1b for embeddings and equation 2b for TF-IDF), and the
other treated each feature independently (see equation 1a for
embeddings and equation 2a for TF-IDF).

favg,j =
1

mj

mj∑
i=1

vwji (1a)

fglobal avg =
1

M

n∑
j=1

mj∑
i=1

vwij (1b)



TABLE III
DESCRIPTION OF ENCODINGS USED

Encoding Description
Combined-fast Custom 100-dimensional model

trained with the fastText algorithm
with VDI5600 and IEC62264
standardsa.

Combined-w2v Custom 100-dimensional model
trained with the word2vec algorithm
with VDI5600 and IEC62264
standardsa.

crawl-300d-2M-fast Derived from a 300-dimensional, 2
million word fastText news feed crawl
data [11].

enwiki 20180420 100d-w2v Based on a 100-dimensional word2vec
model from English Wikipedia data
[12].

text-embedding ada OpenAI’s Ada 1536-dimensional
model for advanced natural language
understanding [13].

davinci-001 OpenAI’s Davinci 12288-dimensional
model for deep comprehension and
generation capabilities [13].

TF-IDF Generated using Term Frequency-
Inverse Document Frequency to em-
phasize important words [14].

wiki-news-300d-1M-fast Created from a 300-dimensional, 1
million word fastText model trained on
WikiNews data [11].

alearning rate 0.05, window size 5, word occurrence minimum count of 5

TF-IDFt,Fj
= TF(t, Fj)× IDF(t) (2a)

TF-IDFt = TF(t)× IDF(t) (2b)

We then applied three algorithms for clustering: Affinity
Propagation [15], HDBSCAN [16], and k-means [17]. HDB-
SCAN, like Affinity Propagation, doesn’t necessitate preset-
ting the number of clusters and is parameterized by the min-
imum cluster size. In contrast, k-means requires a predefined
number of clusters. We included k-means to explore whether
specifying a certain number of clusters would yield better
outcomes. For each algorithm a grid search (see Table IV for
parameters) was conducted across different combinations of
features (path, operation id, summary, tag) and all features –
both in averaged and independent settings.

The preference for Affinity Propagation is calculated as
follows:

d2ij =

d∑
k=1

(xik − xjk)
2 (3)

sij = −d2ij (4)

Median(S), S = {sij | 1 ≤ i, j ≤ n, i ̸= j} (5)

Preference = Median(S)× f, f ∈ {1, 2, 3, 4} (6)

TABLE IV
CLUSTERING ALGORITHM PARAMETERS

Algorithm Hyperparameter Values
Affinity Propa-
gation

preference factor 1, 2, 3, 4

Affinity Propa-
gation

damping 0.5, 0.6, 0.7, 0.8, 0.9

Affinity Propa-
gation

max iter 100, 200, 300, 400, 500,
600

Affinity Propa-
gation

convergence iter 10, 20, 30, 40, 50, 60

HDBSCAN min cluster size 2, 3, 4, 5, 6
HDBSCAN min samples None, 5, 10, 15
HDBSCAN cluster selection epsilon 0.0, 0.1, 0.5, 1.0
KMeans n clusters 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20
KMeans init k-means++, random
KMeans max iter 300, 400, 500
KMeans n init auto

Equation 3 calculates the pairwise square euclidean dis-
tances. The distance is negated as the Affinity Propagation
works on similarities (equation 4). The default preference is
then calculated as the median of the result from equation 5.
The individual preference for the experiments is then varied
by multiplying the default preference with one of the four
magnitudes in equation 6.

To evaluate the performance of the processing methods
(comprising the algorithm, feature set, encoding, and averag-
ing setting) individually and in comparison to human experts,
we employed three distinct metrics: silhouette score [18],
Adjusted Rand Index (ARI) [19], and Normalized Mutual
Information (NMI) [20]. These metrics were chosen for their
ability to gauge the compactness of clusters, the similarity
of two assignments, and the mutual information between
assignments, adjusted for chance.

V. RESULTS

Our experimental setup involved a comprehensive grid
search over feature sets, average settings, encodings, algo-
rithms, and hyperparameters, resulting in 221,696 runs with
corresponding cluster (microservice candidates) outcomes.
These were tracked using mlflow and analyzed in Python after
exporting to CSV files. Concurrently, human experts manually
identified 10 microservice candidates for the same MES, lever-
aging their domain knowledge to establish a benchmark for our
automated methods. The largest of these clusters encompassed
94 members, while the smallest contained a single operation
and an average size of 29.5 operations. Our analysis, detailed
in Figure 3, focuses on the minimum, maximum, and mean
values across all runs for each main factor to address each
research question.

A. Q1: Performance in a Real-World Scenario Compared to
Human Experts

In our study comparing machine learning decomposition
to human expert analysis, the maximum values for Adjusted
Rand Index (ARI) and Normalized Mutual Information (NMI)



Fig. 3. Comparison of method, average setting, feature set and encoding.

were impressive, reaching 0.745 and 0.825, respectively. This
demonstrates the potential of the automated method to closely
align with human expertise in optimal scenarios. However,
the mean values, standing at 0.321 for ARI and 0.532 for
NMI, indicate that achieving such high performance requires
careful configuration and tuning of the model to suit specific
scenarios.

B. Q2: Most Effective Attributes in the OpenAPI Specification

Concerning the effectiveness of various attributes in the
OpenAPI specification, our analysis revealed that certain fea-
ture combinations consistently led to better decomposition
results. Specifically, feature sets that included the ’tag’ at-
tribute, particularly when combined with ’path’ and ’operation
id’, showed superior performance in clustering quality. In our

real-world example, this combination achieved maximum ARI
and NMI scores of 0.717 and 0.814. This suggests that these
attributes are key indicators in the OpenAPI specification of
our real-world example for identifying cohesive microservice
candidates. However, the ’tag’ attribute is special to the
OpenAPI description in our real-world case as there is no
consistent definition of what it should include. The ’path’
attribute emerged as the next best alternative (maximum ARI
of 0.503 and NMI of 0.679) and performed significantly better
than the ’operation id’, which was the suggested attribute by
[10] (maximum ARI of 0.262 and NMI of 0.530).

C. Q3: Impact of Feature Encoding on Results

For the effect of feature encoding on decomposition out-
comes, we compared the ’average’ (True) and ’non-average’



Fig. 4. Influence of preference magnitudes

(False) encoding settings. The results indicate a marginal
difference between these two methods: the maximum ARI
for ’average’ encoding is 0.717, slightly lower than 0.746 for
’non-average’ encoding. Similarly, the maximum NMI is 0.814
for ’average’ compared to 0.826 for ’non-average.’ However,
these slight variations are not substantial enough to conclude
a definitive preference for one method over the other in the
context of our study. Therefore, the choice between these
encoding methods can be based more on other factors, such
as ease of implementation or computational efficiency.

D. Q4: Enhancement of Results through Domain-Specific
Word Embedding

In investigating the effectiveness of encodings, we
compared domain-specific custom-trained word embeddings
(’Combined-fast’ and ’Combined-w2v’) but also assessed their
performance against other encoding methods, including the
simple TF-IDF encoding and more advanced options like
the openAI davinci embedding. While our custom embed-
dings achieved maximum ARIs of 0.546 (’Combined-fast’)
and 0.412 (’Combined-w2v’) and NMIs of 0.726 and 0.714,
respectively, they are outperformed by all other encodings.
Despite its simplicity, the TF-IDF method reached a notable
maximum ARI of 0.704 and NMI of 0.806, demonstrating
its effectiveness. However, a significant observation was the
high deviation in the mean cluster count (28.29 for TF-IDF)
compared to the actual cluster count of 10 identified by human
experts. The best result was achieved with the openAI davinci
embedding, which recorded the highest maximum ARI of
0.746. This suggests that general embeddings can capture
intricate relationships even in very specific domains; thus,
training for embeddings on domain-specific document bodies
is unnecessary.

E. Q5: Differences in Clustering Algorithms in Terms of
Microservice Candidates’ Quality

In our comparative analysis of the clustering algorithms,
k-means, Affinity Propagation, and HDBSCAN each dis-

played distinct characteristics in microservice decomposition.
k-means demonstrated the most consistent performance with
the highest maximum ARI of 0.746 and NMI of 0.826, align-
ing with expectations due to its use of a predefined number of
clusters. Affinity Propagation, with a maximum ARI of 0.679,
maximum NMI of 0.797 and a wide-ranging cluster count (1
to 329), resulted in a more varied set of solutions, indicating
the need for careful configuration. HDBSCAN, while showing
low means of ARIs (0.05) and NMIs (0.19), stood out with a
notably high maximum silhouette score of 0.961, suggesting
its ability to create well-defined and distinct clusters but with
comparable less consistency with the result of the human
experts.

VI. DISCUSSION

Our study’s application of Affinity Propagation has under-
scored its potential in microservice decomposition, demon-
strating performance that approaches the consistency of the
k-means algorithm but with a wider variance, especially in
terms of cluster count. The key metrics’ progression, as
observed across varying preference magnitudes (Figure 4)
indicates that while the algorithm efficiently narrows down
the candidate pool, it also poses challenges for practical
deployment, particularly in new scenarios where ARI and NMI
are not viable metrics. The trend in silhouette score presents
an interesting contrast. As the preference magnitude increases,
the silhouette score decreases. This trend indicates a possible
misalignment. With an increasing preference magnitude, the
algorithm’s suggestions become more similar to the experts’
solutions, but the definition and separation of clusters become
less distinct. This paradox raises doubts about the algorithm’s
effectiveness in new environments where the silhouette score
is the primary measure available, which may provide limited
insight. Thus, even with the use of algorithms, human inter-
vention is still required to identify microservice candidates
accurately. Experts must carefully analyze the initial algorith-
mic propositions and make necessary adjustments to refine the



proposed microservice candidates. They may also employ sup-
plementary methods that incorporate further attributes, such
as performance and scalability, which go beyond the cohesion
focus of the current approach. Despite these considerations,
the Affinity Propagation method is still useful in practical
problem-solving, as it provides a starting point to identify
microservice candidates in a matter of seconds.

VII. CONCLUSION

This study has successfully demonstrated a method for
decomposing a monolithic MES into microservice candidates
using OpenAPI specifications, emphasizing the importance of
feature selection and algorithm configuration. The alignment
of our decomposition results with human expert judgment
underscores the potential of the approach. However, there
is a noteworthy discrepancy of best runs ARI and NMI
metrics that are only available in comparison experiments,
with the silhouette score that would be used for evaluating
the clustering effectiveness in practical applications. This
highlights the essential role of human oversight in semantics-
driven microservice decomposition of monolithic applications.
Future research should pursue an integrative approach that
addresses other microservice attributes, such as scalability
and performance, thereby offering a more comprehensive
framework for decomposition. Investigating the potential of
deep learning clustering approaches, as suggested by [21],
may lead to further improvements. Additionally, applying and
validating these methods across diverse real-world APIs is
needed to solidify the findings and extend the applicability
of our study’s results.
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