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Abstract—In this paper, we investigate the performance of
state-of-the-art time series classification algorithms for pedaling
detection in bicycles, focusing on embedded device implementa-
tion. Using accelerometer data from a crank-mounted sensor, we
benchmark various algorithms, including Rocket, MiniRocket,
CNN, LSTM, and HIVECOTEV2. The Rocket algorithm achieves
the highest accuracy, followed by LSTM and CNN. However,
considering the memory and complexity constraints of embed-
ded devices, the CNN model emerges as the most suitable
option. Surprisingly, MiniRocket underperforms in classifying
backward pedaling as a non-pedaling state, warranting further
investigation. Our findings contribute valuable insights into the
applicability of time series classification algorithms for pedaling
detection, paving the way for advancements in user assistance
systems for e-bikes and mountain bikes.

Index Terms—time series classification, embedded system,
pedaling detection, tensorflow lite, cnn, neural networks

I. INTRODUCTION

Modern vehicles are equipped with sophisticated user as-
sistance systems that significantly enhance the user experi-
ence on multiple levels. Examples of such systems include
adaptive cruise control, lane-keeping assistance, and collision
avoidance systems. These advanced capabilities are made
possible through embedded systems that process data gathered
from a wide array of sensors [1]. In recent years, artificial
intelligence (AI) and machine learning (ML) have emerged
as state-of-the-art techniques for interpreting and analyzing
sensor data. Time series classification, in particular, has played
a crucial role in this area. Time series classification is a process
that involves identifying patterns or categories within time-
ordered sequences of data points. This technique has proven
to be highly effective in a variety of application domains [2].
Numerous approaches have been developed for time series
classification, yielding impressive results across many use
cases. The primary objective of this paper is to evaluate
the performance of state-of-the-art time series classification
algorithms in the context of a specific use case related to
modern bicycles.

The remainder of the paper is structured as follows: related
work in the field of time series classification is discussed,
the bicycle use case under investigation is detailed, the ex-
perimental setup employed for evaluating the algorithms is
described, and the obtained results are presented. Following
this, the results are discussed, and the paper concludes with a
summary of the main findings and their implications.

II. RELATED WORK

A. State of the art for time series classification

Various network architectures, training methods, challenges,
and opportunities in applying deep learning to time series
data have been discussed [3]. The main focus lies on human
activity recognition and satellite earth observation applications.
Fawaz et al. [4] present a unified taxonomy of deep neural
networks (DNNs) for time series classification (TSC) and an
open-source deep learning framework for the TSC community.
The study, which involves training 8730 deep learning models
on 97 time series datasets, is the most comprehensive analysis
of DNNs for TSC to date. The currently top-performing algo-
rithm is HIVECOTE2, an ensemble algorithm. It outperforms
current state-of-the-art algorithms on 112 univariate UCR
archive datasets and 26 multivariate UEA archive datasets
[5]. The ensemble also includes the Rocket algorithm, which
uses a linear classifier with random convolutional kernels. It
can achieve state-of-the-art accuracy with significantly reduced
computational expense compared to HIVECOTE2, enabling
rapid training and testing on large datasets. The Rocket
algorithm allows training and testing on all 85 ’bake off’
datasets in the UCR archive in under 2 hours and can train
a classifier on a large dataset of more than one million time
series in approximately 1 hour [6]. MiniRocket, a reformulated
version of Rocket, offers up to 75 times faster performance on
larger datasets while maintaining almost the same accuracy.
This method allows for state-of-the-art accuracy on all 109
datasets from the UCR archive in under 10 minutes, making
it significantly faster than comparable methods and more
accurate than methods with similar computational expense



[7]. Petelin et al. [8] focuses on the impact of time-series
features on the performance of machine learning (ML) models
used for predicting the performance of time-series forecast-
ing algorithms. The study utilizes the tsfresh and catch22
libraries to extract time-series meta-features and employs ML
regression models to predict the performance of 61 time-
series forecasting algorithms. Although this study provides
important advances for the algorithm selection process, it
does not consider the constraints of embedded devices in
terms of memory, computing power, and power consumption
constraints. In addition, it does not consider feature extractions
that are not humanly interpretable such as those performed by
Rocket and MiniRocket. In summary, the performance of time
series classification algorithms has been studied on general
benchmarking datasets, and even automatic selection proce-
dures have been researched. However, these results cannot be
directly transferred to applications on low-powered embedded
devices.

B. Time Series Classification on Embedded Devices

A few studies are reporting on time series classification on
embedded devices. Zu et al. [9] use dilated LSTM-FCN, for
multivariate time series classification to detect driver drowsi-
ness based on compact facial landmark sequences with low
computational complexity. Achieving an impressive 86.90%
classification accuracy and an inference speed of 15 frames
per second on embedded devices. Arablouei et al. [10] develop
an end-to-end deep neural network algorithm for classifying
animal behavior using accelerometry data on an IoT device in
a wearable collar tag. Combining IIR and FIR filters with a
multilayer perceptron, the algorithm enables real-time, low-
latency behavior inference without straining the embedded
system’s computational, memory, or energy resources. Reiser
et al. [11] present a novel framework for an end-to-end
ASIC implementation of low-power hardware for time series
classification using neural networks. This approach optimizes
the neural network configuration for both accuracy and energy
efficiency and includes a custom-designed hardware architec-
ture, local multi-level RRAM memory, and power-down mode.
The framework demonstrates a 95% reduction in energy con-
sumption compared to state-of-the-art solutions when detect-
ing atrial fibrillation in ECG data. Giordano et al. [12] presents
a proof-of-concept device for monitoring handheld power tool
usage and detecting construction tasks or misuses with an
energy-efficient architecture. The device features Bluetooth
low energy, NFC connectivity, a temperature and humidity
sensor, and an accelerometer. A Tiny ML model is employed
to classify tool usage on the edge, achieving 90.6% accuracy.
The device demonstrates ultralow power consumption and a
potential battery life of up to four years in operation, enabling
smart IoT devices with a long lifetime for monitoring tool
degradation and usage. Rajapakse et al. [13] explore the
workflow for creating machine learning models for embedded
devices and survey benchmarking methods. They conclude
that only two benchmarking frameworks exist: Banbury et al.
[14] use four reference datasets for (keyword spotting, Visual

Wake Words, Image Classification, and Anomaly Detection
with neuronal network-based models. Sudarshan et al. [15]
use 8 datasets for audio classification, image classification and
wave classifciation also on neuronal network-based models
only. However, this omits state-of-the-art models such as
HIVECOTE-V2 and MiniRocket, which tend to perform even
better in some use cases. In summary, various applications
have been developed to establish tailored solutions; however,
there has been limited emphasis on a comprehensive bench-
mark of existing state-of-the-art algorithms, particularly in the
context of embedded devices. Our study aims to address this
gap.

III. PEDALING DETECTION

Pedaling detection is a valuable capability that has ap-
plications for both classic bicycles and e-bikes. It involves
determining whether the rider is actively moving the cranks
forward. There are two primary use cases for pedaling detec-
tion:

1) For e-bikes, pedaling detection is essential for comply-
ing with legislation that mandates motor assistance only
when the rider is actively pedaling. In this case, the
motor must cease support if the rider stops pedaling,
and the bike’s propulsion must also halt within a defined
time frame [16].

2) Pedaling detection can also serve as an activation mech-
anism for automatically adjusting suspension elements
according to the current riding situation, particularly for
mountain bikes. When a rider is actively pedaling, it
is undesirable for their energy to be wasted through
shock movement. As a result, the compression valves
are automatically closed during pedaling. Conversely,
when the rider is not pedaling, typically during downhill
sections, compression valves are opened to provide
maximum suspension performance [17].

There are several methods for achieving pedaling detection.
The most common technique involves attaching a magnet to
the crank and utilizing a Hall sensor to periodically detect its
movement. However, this approach has the drawback of being
unresponsive due to the required proximity between the mag-
net and the Hall sensor. An alternative method is to employ
a torque meter, but this increases construction complexity and
drive train cost as it necessitates the use of resistance strain
gauges. A more cost-effective option is to use a gyroscope
mounted on the crank to detect movement. This allows the
simple detection of crank movements as only a threshold for
the rotation rate needs to be monitored. However, a gyroscope
has a high energy consumption, requiring frequent battery
charging for the sensor, which can lead to a cumbersome user
experience. An alternative solution is to use accelerometer-
based crank movement detection. Unlike the gyroscope, the
sensor signal cannot be directly interpreted as crank movement
due to other acceleration movements present on a bicycle.
Consequently, an algorithm that evaluates the sensor signals
and classifies them into the two pedaling states—pedaling and
not pedaling—would be necessary for this approach.



IV. EXPERIMENT SETUP

Fig. 1. Crank-mounted accelerometer measurement axis.

In order to identify a suitable algorithm capable of running
on an embedded device, we designed an experiment to bench-
mark several algorithms. Our experiment setup is based on
an IMU sensor, which includes an accelerometer mounted to
the crank of a bicycle. Figure 1 illustrates the measurement
axis of the sensor mounted to the crank, with only the x-
and y-axis being relevant for detecting crank movement. The
experiment involves collecting several data points that include
typical pedaling movements, such as regular forward pedaling,
no pedaling, and backward pedaling. It is important to interpret
backward pedaling as no pedaling, particularly for the e-bike
use case. To collect the necessary data, we used an Adafruit
Feather Sense Board based on an NRF52840 SoC, a common
foundation for many low-energy commercial systems. This
board integrates the ST Microelectronics LSM6DS33 system-
in-package featuring a 3D digital accelerometer and a 3D
digital gyroscope. We implemented a BLE peripheral that
publishes accelerometer and gyroscope signals at a frequency
of 20 Hz and a sensor sampling rate of 400 Hz. For data
collection, we developed a Flutter smartphone app that acts as
BLE central, connecting to our BLE Peripheral implemented
on the Adafruit Feather Sense, subscribing to the measurement
BLE Characteristic of accelerometer and gyroscope, and stor-
ing the measurement samples in a CSV file. We mounted the
sensor to the right crank on a 26” mountain bike hardtail with
160mm front suspension and mounted an iPhone running the
Flutter app for data collection on the handlebar. We selected
a long-standing, ambitious hobby athlete as a rider for data
collection to ensure that all typical riding scenarios could be
covered. We instructed the rider to ride on local mountain bike
trails, including steep ascents and descents, rough terrain, and
also dedicated cycleways and public city roads. In a debriefing
using the additionally collectd GPS signal we verfied that all
typcial riding scenarios were covered. In total, we gathered
173 minutes of actual cycling data involving all previously
described situations, resulting in 9.4 MB of data. Additionally,
the rider recorded a short, specific dataset for validation
purposes, comprising an alternating sequence of pedaling,
stopping, and backward pedaling within a 40-second time
span. To label the data, we used the gyroscope values, which
can easily identify whether the crank is moving in a forward

or backward direction. The label ”pedaling” is set if the crank
is moving at a speed of more than 1 rad/s for a window of
5 measurements; otherwise, the label is set to ”not pedaling”.
This labeling mechanism can be done automatically and does
not require human effort. Figure 2 displays both gyroscope and
accelerometer measurements for a section of the validation
dataset. The rider first pedals forward, then backward, and
forward again. In order to prepare the data for time series
classification, we preprocessed it as follows: To assess the
influence of publishing frequency, we constructed alternative
datasets that resample the data to 100 ms and 150 ms intervals,
in addition to the original 50 ms interval. We then cut same-
sized sequences of length 10 and 20 elements for time series
classification purposes. The label of the last row was used
to create the label for each sequence. Each new sequence is
shifted by exactly one row, resulting in a maximum of 20,480
training rows for the 50 ms interval at sequence length 10.

V. RESULTS

A. Sequence length screening

We began the investigation by first screening possible vari-
ations between the different sequence datasets. We assumed
that the varying sequence durations resulting from the sample
intervals and number of elements could impact the accuracy.
For example, a sequence length of 10 elements with an
interval of 50 ms considers only sensor signals of a 0.5-second
time frame. In contrast, the sequence with 150 ms interval
and 20 elements has a 3-second time frame. Consequently,
this could influence the shape of the patterns that can be
recognized in the sequence by the algorithms. We employed
the MiniRocket classification algorithm with default settings,
which provides state-of-the-art results with minimal training
time to screen for these differences. The results varied only
slightly, with a maximum accuracy of 0.650 for a 150 ms
sampling interval and 20 elements sequence length and 0.638
for a 50 ms sampling interval and 10 elements sequence length.
We expected a loss in accuracy for shorter durations due to
less distinguishable signal patterns. However, the slight margin
of the difference indicates that only a fraction of the longer
sequences are relevant for the classification decision. To decide
on the sequence dataset for our further study, we considered
the practical effect of the different sequence durations. The
dataset with a 150 ms sampling rate and 20 elements results
in a 3-second long delay after the start of the sensor till the first
pedaling state classification is possible. This is not desirable,
particularly for the e-bike use case in which a rider would
like support from the motor shortly after the crank movement
starts. For this reason, we selected the second-best option at
a 50 ms sampling rate and 20 elements, yielding almost the
same accuracy of 0.649.

B. Algorithm screening

Using these sequence parameters, we applied the follow-
ing state-of-the-art time series algorithms: DrCIF, Individual
TDE, TSFresh, HIVECOTEV2, Rocket, MiniRocket CNN,
and LSTM (see Table I for configuration details). All training



Fig. 2. Accelerometer x-axis and y-axis signal.

TABLE I
ALGORITHMS AND THEIR PARAMETERS IN THE SCREENING EXPERIMENT

Algorithm Parameters
HIVECOTEV2 Default settings

MiniRocket num kernels=10000, RidgeClassifierCV
Rocket num kernels=10000, RidgeClassifierCV
LSTM 64 units, tanh activation, Dense(50, relu), Dense(2, softmax)
CNN 64 filters, kernel size 3, pool size 2, Dense(50, relu), Dense(2, softmax)

TSFreshClassifier default fc parameters=”minimal”, estimators=200 random forest trees
IndividualTDE Default settings

DrCIF n estimators=3, n intervals=2, att subsample size=2

TABLE II
TIME SERIES CLASSIFICATION ALGORITHM RESULTS

Algorithm Accuracy Training duration (s) Inference Duration (s) Size
HIVECOTEV2 0.815 913925.6 8.9 27.6MB

MiniRocket 0.622 241.6 0.186 1.46MB
Rocket 0.951 206.5 0.078 1.45MB
LSTM 0.947 458.2 0.05 495.49KB
CNN 0.918 126.9 0.046 129.58KB

TSFreshClassifier 0.631 40.04 0.045 4.46MB
Individual TDE 0.584 685 0.033 2.27MB

DrCIF 0.503 40.55 0.009 589.93KB

was conducted on an Intel(R) 64-Core Xeon Gold 6142 CPU
with 2.60 GHz and 384 GB RAM. Table II outlines the
results for the training of each algorithm, including the actual
accuracy and required training time. Additionally, we present
two further metrics highly relevant for embedded systems:
inference time and memory size. Inference time offers insight
into a model’s complexity and, thus, its suitability for an
embedded device. The memory size of the model is also cru-
cial, as embedded devices have strict memory limitations, and
excessively large models cannot be run on them. The results
reveal the highest accuracy for the original Rocket algorithm,

with an accuracy of 0.951, followed closely by LSTM at 0.947
and CNN at 0.918. There is a more significant gap toward
HIVECOTEV2, with an accuracy of 0.813. All other algo-
rithms score lower than the MiniRocket’s accuracy. Figures
3 and 4 provides a comparison between the actual pedaling
values, as indicated by the gyrometer, and the predicted values
generated by MiniRocket. It is evident that the MiniRocket
algorithm cannot accurately capture backward pedaling as not
pedaling. In contrast, the LSTM can adequately capture these
differences, with only a few misclassifications for a small
number of sequences. Regarding the suitability for embedded



Fig. 3. MiniRocket predicted values vs. true values in validation set

devices, the model size is the limiting factor. Among all
benchmarked algorithms, only the CNN is suitable for transfer
to a state-of-the-art embedded SoC such as NRF52840, as
it falls below the 256 KB limit and exhibits relatively low
complexity, indicated by the inference time of 0.046s.

C. Grid Search Hyperparameters for CNN

We conducted an extensive hyperparameter grid search to
optimize the performance of our convolutional neural network
(CNN) model. This search was integral to determining the
most effective configuration for our primary task: detecting
bicycle pedaling using embedded systems. The hyperparame-
ters investigated included neurons, kernel size, pool size, and
the number of filters. We considered a range of values for each
parameter: neurons (25, 50, 75), kernel size (3, 6, 9, 12), pool
size (2, 4, 6, 8), and filters (16, 32, 64, 128, 256). To mitigate
the inherent randomness in neural network initialization, we
ran each combination of these parameters 10 times. The results
from these runs were then averaged to obtain a more reliable
measure of each configuration’s performance. Our search led
to the identification of an optimal configuration: 256 filters,
75 neurons, a kernel size of 3, and a pool size of 2. This
combination yielded a mean accuracy of 0.934, with minimal
deviation in maximum and minimum accuracy scores (see also
Figure 4 for comparison of predicted to true values in the
validation data). This consistency underscores the stability and
reliability of the solution in a real-world application scenario.
Following the success of the grid search, we proceeded to
adapt our model for practical deployment on an embedded
system controller. Utilizing TensorFlow Lite (TFLite) [18], we
converted the CNN model into a format suitable our target
device: an Arduino Nano33. This device is also based on the
NRF52840 SoC but is in contrast to the Aadafruit Feather
sense directly supported by TFLite for Microcontrollers. As
the NRF52840 supports floating point operations, we used an
integer conversion of the model with float fallback. This fully
quantizes the models, including parameters and activations,
and only uses float32 operators if no integer implementation
of the operator is available in TFLite [19]. To enable this
full integer quantization, we provided a small representative
dataset of 500 rows to the TFLite converter. This allows
for calibrating the range of all floating-point tensors in the
model, including non-constant tensors such as model input,
activations, and model output, by running several inference

Fig. 4. CNN predicted values vs. true values in validation set

cycles. This conversion process was crucial for compatibility
and offered a significant size reduction of the model. The
final model size was compressed to a mere 16KB, making it
an excellent fit for the memory constraints of the NRF52840
SoC. We deployed the model to the controller and analyzed
inference time and power consumption. The optimized model
demonstrated an impressive average inference time of just
4.3ms in our tests. In addition, the pedaling detection con-
sumed 3.11 mA less than a pedal detection based on gyroscope
thresholds.

VI. DISCUSSION

Upon initially examining the data and the nature of the
problem, we did not expect a complex decision-making pro-
cess. The problem involves only two data dimensions: x-
axis accelerometer and y-axis accelerometer. Additionally, an
analysis of the sensor data suggested that the two states,
pedaling and not pedaling, could be easily distinguished by the
presence or absence of an overlaying sinus pattern. However,
backward pedaling, which needs to be interpreted as not
pedaling, is more challenging to discern. It also features an
overlaying sinus pattern but with a changed order of sensor
values. Contrary to our expectations, not all high-ranking algo-
rithms in existing benchmarks could easily solve the decision
problem. In particular, HIVECOTEV2, a top-performing al-
gorithm in many benchmarks, performs poorly in comparison.
HIVECOTEV2 combines three classifiers (TDE, DrCIF, and
an ensemble of Rocket classifiers (ARSENAL) that we apply
individually with a Shapelet Transform Classifier in a meta-
ensemble algorithm. Each classifier generates a probability
distribution over the classes for a given time series. It then
combines these probability distributions by weighting them
according to an estimate of each classifier’s testing accuracy
[5]. It is possible that the poor performance of the classification
system is due to a combination of poor classifiers (such as
DrCIF and TDE) with the best-performing Rocket, resulting
in lower accuracy. It is also possible that the ARSENAL
classifier is not performing as well as the individual rocket
classifier. To determine the actual cause, we would need
to investigate the ARSENAL and also the not yet applied
Shapelet Transform Classifiers separately. However, because
the algorithm and its models require significant resources for
training and inference, they are not suitable for embedded
devices. Another surprising finding is the significant difference



in performance between MiniRocket and the original Rocket
algorithm. The reason for MiniRocket’s poor performance is
its inability to classify backward pedaling as a non-pedaling
state, even when using a large number of kernels (10000).
Since we used the same number of kernels for the original
Rocket algorithm, the difference must lie in other differences
between these algorithms, such as the kernel length, range
of weights, bias terms, dilation, and padding. However, a
more in-depth analysis would be necessary to determine the
cause, which was not the focus of this study. The favorable
performance of the two neural network-based methods, CNN
and LSTM, is a positive development, as they can be more
easily transferred to embedded devices using existing tools
such as TFLite. Our study compared the performance of
our model on different hardware environments. Surprisingly,
the 64 MHz Cortex-M4 NRF52840 performed around 10
times faster than the Intel 64-Core Xeon Gold 6142 CPU.
This is because our model was run in Python on the Xeon
CPU, which is slower due to its high-level nature and the
overhead associated with its interpreter. In contrast, we used a
direct C array model representation on the NRF52840, which
gives lower-level control over hardware resources and is more
efficient. This observation highlights the importance of testing
and optimizing models in the intended deployment environ-
ment, particularly for machine learning models in varied and
potentially resource-constrained environments.

VII. CONCLUSION

In this study, we investigated the performance of various
state-of-the-art time series classification algorithms to detect
pedaling states in bicycles. The core objective was to identify
an algorithm that not only delivers accurate results but also
operates efficiently on an embedded device. Our comprehen-
sive analysis revealed that while several algorithms showed
potential, not all could effectively address the decision problem
within the constraints of our use case. The top performers
were Rocket, LSTM, and CNN models. Although Rocket
had the highest accuracy, the CNN model was more suitable
for embedded systems due to its compliance with memory
limitations and lower complexity. The MiniRocket algorithm
struggled to classify backward pedaling accurately, which re-
quires further investigation. A key finding of our study was the
effective optimization of the CNN model for the NRF52840
SoC, achieving a mean accuracy of 0.934. The model size was
reduced to 16KB with post-training quantization using TfLite.
The inference time of the deployed model is 4.3ms, 10x faster
than on an Intel Xeon server, and offers significant energy
savings over gyroscope-based pedaling detection. Therefore,
this study offers insights into the efficacy of time series
classification algorithms for pedaling detection in bicycles
and emphasizes the criticality of environment-specific model
testing and optimization in general.
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