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Abstract—In production, when it comes to quality defects or 

production disruptions, expert knowledge for root cause analysis 

is essential. This knowledge can be captured in a machine-

readable format using ontologies and can then be probabilistically 

expanded in the next step. Bayesian networks can be employed to 

provide an estimate of the probability describing the cause of a 

production error. The aim of this work is, therefore, the 

development of a process diagnosis tool for an existing knowledge 

graph of a robot-based system, which relies on a Bayesian network 

to estimate potential error probabilities. For this purpose, the 

concept of the tool is developed and validated using the use case of 

robot-based glass panel assembly. 

Keywords—Knowledge Graphs, Bayesian networks, smart 

assistance  

I. INTRODUCTION  

The globalization of production is driven by competition and 

is accompanied by increasing product individualization as 

well as shorter delivery times. This increases the complexity 

of production systems and the requirements for process 

control.Expertise can help establish and maintain the 

necessary infrastructure, but this comes with costs and risks. 

Individuals not only need to be trained and deployed, which 

is time-consuming and costly, but the transfer of internal 

knowledge about production facilities often happens 

unsystematically and is at risk of being lost. This leads to 

problems, particularly for small and medium-sized 

enterprises where specialized knowledge is distributed 

redundantly among fewer individuals.  

 

The Industry 4.0 research initiative provides a solution by 

aiming to network human-machine systems. This includes 

the creation of assistance systems capable of preserving and 

efficiently and universally providing expert knowledge. [1] 

The necessary knowledge foundation for these assistance 

systems consists of a coherent digital network that contains 

production data semantically, adequately, and contextually in 

the appropriate granularity. To build this network, semantic 

technologies are used to work with machine data and process 

logic. This leads to the formation of Knowledge Graphs 

(KG), which connect terms and data points from the 

application context as nodes through edges. They are 

characterized, among other things, by their extensibility and 

can be used to infer implicit knowledge. The graph structure 

also allows for the application of other graphical models 

based on nodes and edges. For example, Bayesian networks 

(BN) can be generated from them, which allow for the 

probabilistic description of uncertain connections in the KG. 

This expands reasoning within the KG so that implicit 

knowledge and causal connections can be stochastically 

quantified. [2, 3] 

 

With the goal of maintaining complex production systems 

independently of individuals by utilizing expert knowledge, 

it is necessary to determine probable causes for occurring 

process and product errors. This can help avoid long 

downtimes and more efficiently utilize scarce specialized 

personnel. Currently, there are no assistance solutions that 

allow for probabilistic reasoning based on any KG. This is 

where the present work comes in, aiming to develop a process 

diagnosis tool that fulfils this requirement by using BN 

 

The remainder of this paper ist structured as follows: Section 

II provides a short overview about Bayesian networks in 

production, knowledge graphs and related works about 

decision supporting assistance systems based on a 

combination of BN with KG. In Section III, the concept of 

the smart failure diagnosis tool is explained. This followed by 

Section IV, where a proof of concept implementation is 

presented to evaluate the proposed communication service 

for a use case of a robot-based glass pane assembly process. 

Finally, the proposed smart failure diagnosis tool is discussed 

and an outlook on planned future work is given. 

II.  STATE OF THE ART  

A. Bayesian networks in production 

Bayesian Networks (BN) are Directed Acyclic Graphs in 
which nodes represent random variables and edges represent 
direct logical relationships between random variables. Each 
random variable in the BN has an associated probability table, 
which specifies the conditional probabilities of the associated 
node in relation to the states of its parent nodes. These 
probabilities are also called parameters and are 
algorithmically improved in the implementation of this paper 
[4]. If there is certainty about the state of some variables in the 
BN, a so called evidence is available. With this, the probability 



of the states of the unobserved nodes can be computed by 
using Bayes' theorem, the chain rule for BN, and other 
computational rules of statistics [5].  

 

Fig. 1 Relevant formulas for computing in Bayesian Networks 

Fig. 1 shows the main formulas for calculating probabilities 

in BN. Here, A and B represent two random variables that are 

modeled as nodes in BN. V is the total set of all nodes in the 

BN, X is a subset of them, and v represents a node from V. πv 

denotes the parent nodes, i.e., the predecessor nodes of v. 
 To simplify complex BN and make them computable, 
algorithms like clustering algorithms can be used [6]. BNs are 
a way to represent and quantify causal relationships. Artificial 
neural networks are also suitable for this purpose [7], 
however, BN are more compatible with Knowledge Graphs 
(KG), since their structures are more similar. [8, 9] This makes 
it easier to form and use BN from existing KG. The mentioned 
algorithms for parameter learning and reasoning are located in 
the area of machine learning. Bayesian networks are modeling 
forms and can be used in the field of machine learning. They 
are a probabilistic modeling technique used to model 
uncertainty in data and solve inference problems. Fields of 
application are clustering, supervised classification, multi-
dimensional supervised classification, anomaly detection. 
[10] 

BNs are used to infer states of certain variables that cannot 
be observed, through existing knowledge. BNs are mainly 
used in medical diagnostics, genetic analysis or for failure 
analysis in production [11, 12]. Especially in Decision 
Support Systems (DSS) in production environments BN are 
applied, because they provide a quantified method for 
decision support. An DSS is a tool that enables users to obtain 
information about the production process and modify it with 
computer support [13]. It only supports human decision 
without making own decisions autonomously. At the end of 
the decision support, a decision is made, for example, on how 
to set the machine parameters or which parts need to be 
replaced to solve the problem. Unlike, for example, Root 
Cause Analysis, which makes qualitative statements about 
possible causes of errors [14], the calculation of state 
probabilities in BN makes it possible to determine a sequence 
of actions. This means that a sequence of the most probable 
causes of a fault is output, which are then processed one after 
the other in order to correct the corresponding fault in the most 
efficient way. [15] 

If a BN consists of only two sets of nodes, it is called a 
bipartite graph. It is called complete if every single node of 
one set is connected to every node of the other set [16]. For 
error analysis of machines and processes, the two sets consist, 
for example, of errors and causes. An example is given in Fig. 
2. 

 

Fig. 2 Example of a complete bipartite graph 

B. Semantic technologies in production 

Cross-domain collaboration between humans and 
machines in production can be enabled by providing data from 
other sources and domains. To this end, this data must be 
semantically enhanced with metadata, i.e. context, so that it 
becomes machine-interpretable. For formal implementation, 
the World Wide Web Consortium (W3C) has defined 
standards that are applied in the Semantic Web. [17, p. 9] 

One of these standards is the Resource Description 
Framework (RDF). The RDF model is composed of three 
components, Resources, Properties, and Statements. 
Statements are based on the subject-predicate-object principle 
and define the relationship between subject and object. These 
so-called triples can be used to create knowledge bases that 
enable the human- and machine-readable storage of 
knowledge in ontologies [17]. Ontologies in the informatic 
sense are systematic representations of knowledge and 
formalize the representation in a knowledge base [17, pp. 64-
69]. Ontologies are created using, for example, RDF, or the 
Web Ontology Language (OWL). OWL is also a format 
defined by the W3C that is used to describe ontologies, as is 
RDF. In addition, OWL provides reasoning capabilities, 
among other things [17, pp. 127-128]. Ontologies are directed 
graphs that are created by multiple connected statements. If 
instances are added to the ontology, a so-called Knowledge 
Graph is created. 

C. Existing approaches of DSS based on bayesian networks 

and knowledge graphs 

There are a few approaches to implementing DSS using 
BN. Many of them deal with failure analysis in the 
engineering domain as addressed in part A. [18] Approaches 
that use KG and BN suggest to first extract information from 
the KG and databases, as well as expert knowledge to form 
BN. [3, 19] Especially Ungermann et al. approach is used in 
conceptualization and implementation.  

DSS for fault analysis based on BN are for example GeNIe 
Modeler, BayesServer and UnBBayes [20–22]. In the existing 
DSS, BN are either learned from data or manually modeled. If 
the models are learned from data, historical data from 
production or patient data form the basis. Both the network 
itself and the network parameters are learned. If they are 
reproduced manually, causes, problems (symptoms) and tests 
are included in the model and connected. After complete 
modeling, the DSS allow to determine the most probable 
disease causing the observed symptoms or to find the most 
probable cause to a fault. It is also possible to determine the 
most useful tests to improve prognosis. However, automatic 
modeling of BN without past data is not possible, so that 
neither GeNIe Modeler nor BayesServer provide an interface 
to semantic models or KGs, respectively. Only UnBBayes 
allows a parallel modeling of KG and BN, but no possibility 
to automatically form a BN from an existing KG. UnBBayes  



Fig. 3 Concept overview 

also does not provide a user interface that can be used in the 
context of this work. 

III. CONCEPT DEVELOPMENT  

As shown in Fig. 3, a concept is developed to enable the 
transformation from any KG to a BN. The basis for this is an 
existing ontology enriched with process knowledge. In 
combination with human expert knowledge a DSS for failure 
analysis is generated. In addition, the DSS tool will monitor 
the production process live. MQTT data extraction will be 
used for this purpose. First, conditions for a topology, i.e., a 
node and edge arrangement, must be identified that allow 
reliable conversion from any KG to BN. These consist of: 

1. Directionality 

2. Acyclicity 

Since KG and BN are directed graphs by definition, it is 
sufficient to find a provision to avoid acyclicity. In the given 
KG, faults and causes are instantiated from the corresponding 
classes “faults” and “causes”. Nodes and edges cannot be 
directly transferred from the KG to the BN to avoid cycles, so 
initially only the node sets from faults and causes are 
considered. The faults and causes are transformed into the 
form of a complete bipartite graph. For this purpose, all faults 
are connected to all causes, regardless of whether there is a 
causal relationship between them in the KG or not. By edge 
weighting, i.e. parameter determination, these connections are 
then switched on and off, as well as weighted.  

This parameter determination is done in two steps. First, 
the parameters are initialized. For this purpose, expert 
workshops are held in which a preference matrix is set up by 
using pairwise comparison. This means that two individual 
causes for a fault or a fault combination are compared with 
each other. The more probable cause is marked. This is done 
for all causes and the number of markings is added up and put 
in relation to the total number of causes. This results in a  

 

 

ranking of probable causes and relative probabilities of the 
presence of a cause for the fault or fault combination. These 
relative probabilities are not to be seen absolutely, but allow a 
qualitative gradation of the cause probabilities. This makes it 
possible to recommend a correct sequence of actions to correct 
the fault, even if the probabilities calculated in the BN are not 
yet completely correct. 

These probabilities are corrected by improving the 
parameters with data. For this purpose, case data are stored in 
a CSV file. Case data contains information about the errors 
that occurred, i.e. the evidence and the actual causes 
responsible for them. These are determined, for example, by 
workers during cause correction. Each time the diagnostic tool 
is used for failure analysis, these cases can be entered. In 
addition, cases are entered if errors were noticed by the MQTT 
process monitoring. For this purpose, MQTT messages are 
received from the subprocess steps and checked for errors in 
sequence or duration until the next message at the beginning 
or end of a subprocess step. If, for example, a sub-process is 
not initiated due to faulty communication with the controller, 
the cause of this, a network failure for example, can be 
detected. As a result of the fault detection, the DSS tool is 
automatically started to find the causes. 

Using the CSV file, the parameters are then learned by 
applying Maximum Likelihood Estimator or Expectation 
Maximization to them. These algorithms determine the 
parameters in such a way as to maximize the probability of 
having generated the data at hand. 

In the inference step, the completely defined BN including 
parameters is provided. Since the set of errors and causes can 
be very large, only the relevant errors and causes are obtained 
by clustering algorithms, for example variable elimination. 
This means that all unobserved faults are neglected and thus 
removed from the BN. Also causes, to the errors whose edges 
are weighted low by the parameter determination, are 
removed algorithmically. The principle is illustrated in Fig. 4. 
Possible faults are in the upper row and possible causes is the 
lower one.  



Fig. 4 BN simplification for given evidence 

 Subsequently, the computational steps from II.A are 
applied and the probability of occurrence is determined for 
each cause. 

These calculated probabilities can then be graded and 
visualized in a user interface. This can be done on a web 
interface, for example. In addition, new errors and causes can 
be entered there that have not been observed before. Their 
parameters are initialized in such a way that all edge weights 
are very low, since they have never been observed before. 
Only after multiple occurrences and parameter learning, these 
weights are automatically increased. Furthermore, the user 
interface offers different possibilities to visualize the case data 
and to illustrate the process monitoring. 

IV. IMPLEMENTATION AND VALIDATION  

A. Demonstration scenario 

The concept is applied in a robotic sub-process used in the 
assembly of glass panes for car windows, as shown in Fig. 5.  

 

Fig. 5 Robot-based glass pane completion use case 

In the first step of the process, a rear side window of a 
vehicle lying in a magazine is gripped by the so-called 
handler. The handler, a Universal Robot UR5 robotic arm with 
suction cups attachment, moves to the magazine and lifts out 
a pane after applying the negative pressure. This disc is moved 
to the cleaner cell where the disc is cleaned for adhesive 
application. In this step, the edge of the disc is swept by the 
Kuka Iiwa robot arm. During cleaning, the disc is held in place 
by a suction device. Then the handler picks up the pane again 
and moves it to the primer cell, where a KUKA Agilus KR6 
R900 fivve drives along the edge of the pane using a gluing 
device with glue feed. The disk is held in the same way as in 

the cleaner cell. Finally, the pane is placed back into a 
magazine. The sub-process as described fits into the body 
assembly, which in turn is part of the assembly process of a 
truck. 

The implementation is based on an ontology that was 
created in previous work. It contains information that is used 
for process time optimization as well as for finding causes for 
gluing faults. This means that in the ontology possible causes 
and solutions are connected with the corresponding gluing 
faults. However, there is no probabilistic assessment of the 
correlation level, which is why the process diagnosis tool has 
been developed. In Fig. 6 an excerpt from the ontology is 
shown. 

 

Fig. 6 Except from given ontology 

 In the ontology, possible gluing problems are given in the 
top row, possible causes in the middle, and solutions below. 
The connection between fault to cause is especially relevant. 

B. Process diagnosis tool 

The process diagnostic tool is the implementation for the 
DSS for finding the causes of faults. In the given ontology, 
only possible faults and causes resulting from gluing are 
specified. However, other failures such as process failures can 
also occur. For example, if the handler fails, it must be 
possible to determine the cause for this as well. For this 
purpose, the ontology was extended by classes and instances 
of the sub processes. 

 Fig. 7 shows the main function with the fault diagnosis. By 
using the previously defined BN, the probabilities for the error 
combination "Bubbles" and "Smoke", which can occur during 
the gluing process, are calculated. There is also the possibility 
to add new problems and causes. The parameters of the new 
nodes are initialized automatically and all edge weights are set 
to low as they have never been observed before. 



 

Fig. 7 Calculation of probabilities for causes of gluing fault 

V. SUMMARY AND OUTLOOK  

In the context of this work, a concept for a smart failure 

diagnosis based on a combination of Bayesian networks and 

knowledge graphs was developed. The developed concept 

provides the framework for transferring any Knowledge 

Graphs based on OWL ontologies into Bayesian networks. 

For this purpose, the structure of the Bayesian network was 

defined as a complete, directed, bipartite graph to ensure 

compliance with the identified conditions of acyclicity and 

directedness. Furthermore, an objective parameter 

initialization method was developed through pairwise 

comparison to complete the network. In this step, expert 

knowledge is preserved. Additionally, an approach for 

storing case data was developed to improve the parameters 

and digitally evolve expert knowledge, so that an overall 

process performance can be approved by reducing 

reconfiguration time Furthermore, real-time process 

monitoring capability was established through MQTT data 

extraction. This enables the identification and treatment of 

process errors at the moment they occur. A framework was 

also created for investigating the causes of quality defects or 

process errors by suggesting a sequence of actions that lists 

and prioritizes potential causes. For this purpose, inference 

and learning algorithms were selected. 

 

In future work, it could be advantageous to extend the 

diagnosis tool by all the available information of the control 

processes, such as sub steps of control actions. In the process 

monitoring through MQTT, not all incoming messages were 

analyzed, but only those at the beginning and end of the 

actions of individual cells. This way, the diagnostic tool can 

provide even better decision support. The number of errors 

and issues should also be expanded for the same reason, for 

which the prerequisites have been created. Furthermore, the 

algorithm is to be used as part of the assistance system to be 

developed for knowledge-based control process 

reconfiguration, in the context of the scientific project 

described above. 
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