
Multi-task Transformer with LSTM Model
for Question Set Generation

Yeoun Chan Kim
AI R&D

TagHive Inc.
Seoul, Republic of Korea

ychan@tag-hive.com

Su Bin Jo
AI R&D

TagHive Inc.
Seoul, Republic of Korea

lizzy@tag-hive.com

Min Ah Kim
AI R&D

TagHive Inc.
Seoul, Republic of Korea

minah@tag-hive.com

Radhika Makharia
AI R&D

TagHive Inc.
Kolkata, India

radhika@tag-hive.com

Pankaj Agarwal
TagHive Inc.

Seoul, Republic of Korea
pankaj@tag-hive.com

Abstract—Amidst the COVID-19 pandemic, Educational Tech-
nology (EdTech) has emerged as a vital option for remote
learning. This transition has ushered in technical innovations
while revealing challenges, including the widening educational
gaps attributed to educators’ struggles in assessing student com-
prehension in self-directed learning. The extensively researched
field of knowledge tracing, which models a student’s knowledge
state promises personalized education for effective learning.
Originally reliant on statistical analysis, this approach has
evolved with technological advances and extensive datasets. This
research introduces a multi-task transformer with Long Short-
Term Memory (LSTM) architecture capable of knowledge tracing
and problem-solving time prediction. The model’s adaptability
facilitates task customization yielding superior performance in
knowledge tracing. Our study explores problem-solving time pre-
diction to motivate students and support educators in assessment
design. Detailed implementation is provided in this paper.

Index Terms—deep knowledge tracing, problem-solving time
prediction, transformer, long short-term memory

I. INTRODUCTION

In light of the COVID-19 outbreak, Educational Technology
(EdTech) has garnered global attention as remote learning
became essential while maintaining social distancing. This
shift to remote learning has spurred technical innovations.
However, it has also brought new issues to the forefront such
as an increase in educational (learning outcomes) gaps. The
reasons for this rising trend include the lack of access to in-
person educational resources and personalized guidance, as
well as the digital divide, characterized by disparities in access
to technology and internet connectivity. As a result, it has
become crucial for instructors to identify educational gaps and
provide students with the necessary support.

The most extensively researched area in EdTech is how to
model a student’s knowledge state, referred to as knowledge
tracing. Accurately modeling a student’s knowledge enables
personalized education, leading to more effective learning
for students. Initially, knowledge tracing relied on statisti-
cal analysis of limited class-wise data. With technological

advancements, a large dataset of student performance has
become available, allowing machines to learn representations
of students’ skill acquisition from this data.

Inspired by the potential of machine learning in knowl-
edge tracing, we shifted our focus to another aspect aimed
at enhancing students’ learning experiences: problem-solving
time prediction. During examinations, students are required
to solve questions within a limited time frame, testing both
their knowledge and time management skills. The purpose
of problem-solving time prediction is to motivate students
to improve their fast problem-solving skills by comparing
their own solving speed with what the machine predicts.
Additionally, teachers can utilize these predictions to design
assessments that consider individual students’ abilities to solve
questions quickly.

In this research, we introduce a multi-task transformer with
a Long Short-Term Memory (LSTM) architecture capable of
performing both knowledge tracing and problem-solving time
prediction. The tasks can be easily modified by changing the
target feature, evaluation metric, and the architecture’s final
activation function. In knowledge tracing, our model has out-
performed the current state-of-the-art model while increasing
the model’s efficiency by more than 80%. The implementation
details of our model are described in this paper.

II. RELATED WORKS

The term, knowledge tracing, was introduced by Corbett
and Anderson in 1994 and has since been the subject of
intense study in the field of EdTech. Initial knowledge tracing
used Bayesian statistics to model students’ skill acquisition, as
exemplified by BKT [1]. BKT proposed an innovative method
for modeling student learning; however, this approach required
professional’s assistance.

In the early stages of adopting big-data analysis and
machine learning, researchers attempted to predict students’
performance using collaborative filtering (CF) [2, 3]. With



advancements in machine learning, deep learning began to
play a significant role in knowledge tracing, leading to the
development of deep knowledge tracing (DKT) [4]. DKT
employed recurrent neural network (RNN) to analyze patterns
in sequences of student question-solving. The publication of
DKT spurred the application of RNN in knowledge tracing,
as demonstrated in works such as [5, 6].

In recent research, DKT models inspired by the transformer
architecture [7] have outperformed previous models. The self-
attention mechanism was first introduced in the SAKT model
[8], marking a remarkable shift from topic-based prediction to
question-based prediction. The goals of [5, 6] were to predict
the correctness of the next interaction on a topic, regardless
of the specific questions. SAKT [8] aimed to predict correct-
ness on each individual question. DKT, utilizing the entire
transformer architecture, was introduced in SAINT [9], and
an improved version was introduced in SAINT+ [10]. After
the publication of SAINT+, an online competition on deep
knowledge tracing was held [11], and the first-ranked model
[12] implemented the encoder of the transformer architecture
and the LSTM layer. This model used only the last interaction
of a student as a query to reduce O(L2) to O(L) in a query and
key matrix multiplication within attention calculation. Since
the dataset used to validate the performance of SAINT+ is
widely adopted, SAINT+ is currently considered the state-of-
the-art model in deep knowledge tracing.

III. MODEL ARCHITECTURE

The transformer with LSTM model is constructed of en-
coder layers from the transformer architecture, the LSTM
layer, and a deep neural network layer. The encoder layers
contain a multi-head self-attention network structure from [7],
and the LSTM layer is based on [13]. The entire model
architecture is demonstrated in Figure 1.

A. Input Representation

We adopted the same input features as SAINT+ [10] to
facilitate model performance comparison. SAINT+ introduced
five key input features: exercise ID, part, answer correct-
ness, elapsed time, and lag time. Each exercise is uniquely
identified by an exercise ID, while exercises are categorized
into subject-based groups, with the part feature serving as
the representative category identifier. The answer correctness
feature is assigned a binary value of 1 if a student answered an
exercise correctly and 0 otherwise. The elapsed time indicates
the duration, in seconds, a student took to respond, with
any response times exceeding 300 seconds being capped at
300 seconds. The lag time represents the duration between
the response to the previous exercise and the initiation of
the current exercise, measured in minutes, with durations
exceeding 1440 minutes being capped at 1440 minutes.

To process these features, we applied categorical embed-
ding for exercise ID, part, and answer correctness, while
continuous embedding was employed for elapsed time and
lag time. Notably, when predicting the first interaction within a
sequence, obtaining information regarding answer correctness,

Fig. 1: The Transformer with LSTM model architecture.

elapsed time, and lag time for the initial interaction is not
possible. To address this, we utilized a start token embedding
for these specific features. Differing from the approach in
[12], we integrated a position embedding vector to capture the
sequential order of exercises and student responses effectively.
A visual representation of our input embeddings is provided
in Figure 2.

B. Encoder

The encoder consists of stacked layers, each containing two
sub-layers. The first sub-layer uses multi-head self-attention
mechanism, and the second employs a feed-forward network.
Residual connections and layer normalization are applied to
enhance learning across sub-layers and maintain consistent
dimensions throughout the model.

1) Multi-Head Self-Attention: The Multi-Head Self-
Attention mechanism, a vital component of the transformer
architecture, enhances understanding relationships within
sequences by allowing the model to simultaneously focus
on different parts of the input. It achieves this through
multiple attention heads, each learning distinct patterns and
dependencies, ultimately improving the model’s ability to
capture relationships and dependencies of the sequence. In
our implementation, we employed an upper triangular mask in



Fig. 2: Visual representation of input embeddings. This figure
illustrates the structured embeddings used to encode input fea-
tures, including exercise ID, part, answer correctness, elapsed
time, and lag time, enhancing the model’s understanding of
sequential student interactions and exercise attributes.

the self-attention mechanism, ensuring that the model attends
to information only from previous or current positions, which
is essential for sequence data processing.

2) Feed-Forward Network: The feed-forward network is a
critical component responsible for processing input data. It
consists of two layers of linear transformations and ReLU
activation function to capture intricate patterns and dependen-
cies within the data. These layers enable the model to extract
and combine features effectively, allowing it to understand
both local and global relationships in sequential data. The
feed-forward network’s design is a key to generate coherent
sequences and model complex interactions.

3) Residual Connection: The residual connection [14] is an
element that tackles the vanishing gradient problem and boosts
the model’s depth and learning capacity. It adds the input to
the model’s output, creating a shortcut that allows gradient
flow during training. By preserving the original input and
combining it with the intermediate layer’s output, the residual
connection mitigates the issue of gradient vanishing, thereby
enabling deeper learning.

C. Long Short-Term Memory

LSTM is designed for tasks involving sequential data like
natural language processing, speech recognition, and time
series analysis. Unlike traditional RNN, LSTM excels at cap-
turing long-range dependencies and mitigating the vanishing
gradient problem. They achieve this through a sophisticated
gating mechanism that regulates information flow, allowing
them to retain essential information over extended time steps
while forgetting less relevant data.

D. Deep Neural Network

In the Deep Neural Network (DNN) layer, we have incor-
porated non-linearity to enhance its capabilities. The DNN
architecture is composed of three fundamental components:

a linear layer, a layer normalization, and a ReLU activation
function. Additionally, to mitigate the risk of overfitting, we
have strategically incorporated dropout after the layer normal-
ization process. The output of the DNN is versatile, catering
to different aspects of our model’s functionality. In the context
of deep knowledge tracing, the DNN output yields a sequence
of probability values. This is achieved through the application
of a sigmoid activation layer, facilitating the model’s ability to
assess students’ knowledge states. Conversely, in the problem-
solving time prediction, the DNN produces numerical predic-
tions by passing through a ReLU activation layer.

IV. EXPERIMENTS

A. Dataset

We utilized two datasets throughout our experiments in
deep knowledge tracing and problem-solving time prediction:
the EdNet dataset [15] and the dataset from [11], referred to
as the RAIEd2020 dataset. Both datasets, provided by Riiid
Labs, a South Korean EdTech company, have been intricately
curated to enhance the effectiveness of their adaptive learning
platform, known as ”Santa”. They capture a wide range of
student interactions, including timestamps, content IDs for
educational materials, user IDs, correctness indicators, and
supplementary metadata.

These comprehensive datasets serve as essential foundations
for the development and evaluation of machine learning mod-
els targeting answer correctness prediction and personalized
learning enhancement within the field of EdTech. When com-
paring the statistics between these datasets, the EdNet dataset
features 131,441,538 user interactions, 784,309 students, and
an average of 441.20 interactions per student. In contrast,
the RAIEd2020 dataset boasts over 101 million records,
99,271,300 question interactions from 393,646 students. This
underscores the substantial scale and richness of both re-
sources, rendering them invaluable for educational research
and analysis. The detailed statistics can be found in Table I.

TABLE I: Statistics of Datasets

EdNet RAIEd2020
Interactions 131,441,538 99,271,300
Students 784,309 393,656
Questions 13,169 13,523
Skills 293 188

B. Training Details

We trained our model and comparison models using a single
RTX 3060 GPU. For our model, we employed a sequence
length of 100, a batch size of 64, embedding dimensions of
128, and 8 parallel attention layers for the multi-head attention
mechanism. In the case of encoder layers, we utilized a stack
of N = 4. Regarding the DNN architecture, we found that
setting the number of DNN layers (M ) to 2 yielded the best
performance. As illustrated in Figure 3, we applied the Adam
optimizer with a learning rate that varied over time based on
the equation from [7] and maintained warm-up steps of 4,000.



We conducted a comparative training run with two different
sets of steps, 100,000 and 300,000. To ensure reproducibility,
we controlled randomness in the datasets by fixing their seed
values.

Fig. 3: Learning rate variation over 300,000 steps.

C. Deep Knowledge Tracing

We trained our model with a sigmoid activation output layer
to predict the probability of a student correctly answering
each question, using answer correctness as the target feature.
To evaluate our model’s performance, we compared it to
the SAINT+ model [10] in terms of area under the receiver
operating characteristic curve (AUC) and accuracy (ACC).
Both models were trained to minimize binary cross-entropy
between the target and input features.

1) Experimental Results: As shown in Table II, on both
the EdNet and RAIEd2020 datasets, our model outperformed
the SAINT+ model by an average of 0.24% in AUC. The
best performance was observed on the EdNet dataset with
300K steps. In terms of a step time, our model required only
0.02 seconds per step, while the SAINT+ model took 0.17
seconds per step, representing a remarkable 88.24% increase
in efficiency.

TABLE II: Test Result

MODEL DATASET STEPS AUC ACC
SAINT+ EdNet 100K .7705 .7284

300K .7743 .7311
RAIEd2020 100K .7694 .7216

300K .7736 .7306
Transformer with LSTM EdNet 100K .7715 .7289

300K .7761 .7333
RAIEd2020 100K .7726 .7310

300K .7749 .7313

D. Problem-Solving Time Prediction

In comparison, we modified the final activation layer to
a ReLU activation during the training of our model for

predicting students’ problem-solving times. We used elapsed
time as the target feature, and the model aimed to minimize the
mean squared error. To assess the performance of our model,
we conducted evaluations using the XGBoost and the SAINT+
model. All models were tested based on the root mean square
error (RMSE).

1) Experimental Results: As shown in Table III, our model
is observed to perform 9.12% better on average in terms of
RMSE compared to the XGBoost and SAINT+ models on
both datasets. The best performance was observed on the
RAIEd2020 dataset with 300K steps. In line with the deep
knowledge tracing experiment, our model was 88.24% more
efficient than the SAINT+ model. Since XGBoost operates
using a boosting algorithm and decision trees, it does not
rely on the concept of steps for training, and as a result, we
could not directly compare its efficiency with our model and
SAINT+.

TABLE III: Test Result

MODEL DATASET STEPS RMSE
XGBoost EdNet 15.4413

RAIEd2020 14.6764
SAINT+ EdNet 100K 13.6601

300K 13.4592
RAIEd2020 100K 13.5348

300K 13.3188
Transformer with LSTM EdNet 100K 13.2108

300K 12.4589
RAIEd2020 100K 12.9369

300K 12.3425

V. MODEL IMPLEMENTATION

Our research team operates Class Saathi, a comprehensive
platform serving students from grades 3 to 10 across a
multitude of subjects. At its core, the transformer with LSTM
model plays a pivotal role in generating tailored question sets,
optimizing the learning experience for students.

Among various use cases in deep knowledge tracing and
problem-solving time prediction, Figure 4 demonstrates the
model’s implementation in the creation of predictive scores
and timers. When students select a subject and chapters
of interest, as shown in Figure 4a, our system generates a
question set that evenly distributes chapters of interest and
question difficulties (easy, medium, and hard). The model
predicts the correctness of each question, and an appropriate
timeline for completing the question set, thereby enhancing the
efficiency and effectiveness of study sessions. After complet-
ing the calculations, we present the average predicted answer
correctness as a percentage and the total time required to
complete the question set, as depicted in Figure 4b.

VI. CONCLUSION

In this research, we introduced a model architecture that
combines the encoder of the transformer with an LSTM layer
to perform deep knowledge tracing and problem-solving time
prediction. Our model outperformed the current state-of-the-
art model in deep knowledge tracing and the baseline models



(a) The interface where
students select their subject
and chapters of interest.

(b) The average predicted an-
swer correctness as a percent-
age and the total time re-
quired to complete the gener-
ated question set are displayed.

Fig. 4: An overview into model implementation.

in problem-solving time prediction by 0.24% and 9.12%,
respectively. Additionally, we improved the model’s efficiency
by 88.24% compared to the SAINT+ model while maintaining
superior performance. We also provided an implementation of
the model in a real-world service to illustrate its potential use-
cases. Both deep knowledge tracing and problem-solving time
prediction hold significant promise in assessing students, per-
sonalizing education, and generating tailored learning paths.
Our future research will aim to maximize the potential of tech-
nology in the EdTech field to better support both instructors
and students.

ACKNOWLEDGMENT

This work was supported by the Technological Innovation
R&D Program (S3280745) funded by the Ministry of SMEs
and Startups (MSS, Korea).

REFERENCES

[1] A. T. Corbett and J. R. Anderson, “Knowledge tracing:
Modeling the acquisition of procedural knowledge,” User
modeling and user-adapted interaction, vol. 4, pp. 253–
278, 1994.

[2] N. Thai-Nghe, L. Drumond, A. Krohn-Grimberghe, and
L. Schmidt-Thieme, “Recommender system for predict-
ing student performance,” Procedia Computer Science,
vol. 1, no. 2, pp. 2811–2819, 2010.

[3] K. Lee, J. Chung, Y. Cha, and C. Suh, “Machine learning
approaches for learning analytics: Collaborative filtering

or regression with experts,” in NIPS workshop, Dec,
2016, pp. 1–11.

[4] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami,
L. J. Guibas, and J. Sohl-Dickstein, “Deep knowledge
tracing,” Advances in neural information processing sys-
tems, vol. 28, 2015.

[5] J. Zhang, X. Shi, I. King, and D.-Y. Yeung, “Dynamic
key-value memory networks for knowledge tracing,” in
Proceedings of the 26th international conference on
World Wide Web, 2017, pp. 765–774.

[6] C.-K. Yeung and D.-Y. Yeung, “Addressing two prob-
lems in deep knowledge tracing via prediction-consistent
regularization,” in Proceedings of the fifth annual ACM
conference on learning at scale, 2018, pp. 1–10.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
“Attention is all you need,” Advances in neural informa-
tion processing systems, vol. 30, 2017.

[8] S. Pandey and G. Karypis, “A self-attentive model for
knowledge tracing,” arXiv preprint arXiv:1907.06837,
2019.

[9] Y. Choi, Y. Lee, J. Cho, J. Baek, B. Kim, Y. Cha, D. Shin,
C. Bae, and J. Heo, “Towards an appropriate query, key,
and value computation for knowledge tracing,” in Pro-
ceedings of the seventh ACM conference on learning@
scale, 2020, pp. 341–344.

[10] D. Shin, Y. Shim, H. Yu, S. Lee, B. Kim, and Y. Choi,
“Saint+: Integrating temporal features for ednet correct-
ness prediction,” in LAK21: 11th International Learning
Analytics and Knowledge Conference, 2021, pp. 490–
496.

[11] A. Howard, bskim90, C. Lee, D. H. P. T. Jeon,
J. J. Baek, K. Chang, kiyoonkay, NHeffernan,
seonwooko, S. Dane, and Y. Lee, “Riiid answer
correctness prediction,” 2020. [Online]. Avail-
able: https://kaggle.com/competitions/riiid-test-answer-
prediction

[12] S. Jeon, “Last query transformer rnn for knowledge
tracing,” arXiv preprint arXiv:2102.05038, 2021.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, 2016, pp. 770–778.

[15] Y. Choi, Y. Lee, D. Shin, J. Cho, S. Park, S. Lee, J. Baek,
C. Bae, B. Kim, and J. Heo, “Ednet: A large-scale hi-
erarchical dataset in education,” in Artificial Intelligence
in Education: 21st International Conference, AIED 2020,
Ifrane, Morocco, July 6–10, 2020, Proceedings, Part II
21. Springer, 2020, pp. 69–73.


