
Towards adapting human behaviour in packing
logistics through imitation learning

1st Hermann Foot
Packaging and Retail Logistics and AutoID-Technologies

Fraunhofer-Institute for Materialflow and Logistics
Dortmund, Germany

hermann.foot@iml.fraunhofer.de

2nd Benedikt Mättig
Packaging and Retail Logistics and AutoID-Technologies

Fraunhofer-Institute for Materialflow and Logistics
Dortmund, Germany

benedikt.maettig@iml.fraunhofer.de

Abstract—Despite numerous breakthroughs in the field of
AI, there are still a large number of real-world application
areas where humans cannot be replaced on an ad-hoc manner.
Performance built through experience and knowledge is difficult
to replicate, let alone surpass. Imitation learning offers an
approach to make such strategies numerically accessible using
demonstration data. In this paper we present an approach
of transferring complex behaviour by experienced workers in
packing logistics to a technical system. This method is investigated
and evaluated on the basis of experiments motivated by real-life
use cases. It is shown that imitation learning can be used to
identify and describe characteristics of expert behaviour for this
application. The intend is to use this as a basis for subsequent
computation in especially volume minimization.

Index Terms—imitation learning, bin packing, logistics,
human-machine-transfer

I. INTRODUCTION

Bin packing is one of the best-known algorithmic problems
and is still relevant in practice due to its usefulness especially
in logistics. It serves as the basis for optimization in the area of
volume minimization for transport and storage. However, bin
packing is known to be NP-hard, leading to the development
of various approximation algorithms and heuristics for differ-
ent scenarios. Despite these advancements, many approaches
tend to focus solely on volume utilization, disregarding other
important factors such as stability. This oversight can result
in damages during transportation and avoidable return rides.
Furthermore, the varying use cases in different industries
create diverse requirements, making it challenging to define
a universally applicable optimization function. Instead, it be-
comes necessary to tailor the optimization function according
to specific practical requirements.

To address these challenges, the present work proposes an
approach based on inverse reinforcement learning (IRL). This
approach leverages the knowledge and expertise of experi-
enced employees to define an application-specific optimization
function. The outcome of this approach will serve as a basis
for further load carrier optimizations or in the field of bin
picking.

II. RELATED WORK

The underlying concept of this work is based on the human-
in-the-loop (HITL) framework, where humans play a crucial

role in machine learning [11]. In this framework, humans
utilize their expert knowledge, which is then incorporated
into the technical system through interaction. This approach
enables the knowledge that an employee has built up through
experience to be mapped and reproduced in a technical
system, which in turn can be used, for example, to train new
employees, enabling knowledge transfer [7].
Imitation learning is presented as a concrete method for
implementing the HITL framework. This involves integrating
demonstrations from experts, who can be either humans
or technical systems, into the learning process. Previous
research has demonstrated the wide range of applications
for this approach (eg. [8], [3], [2]). IRL is a particular
type of imitation learning. The goal is to define a suitable
optimization or reward function based on demonstration data.

In logistics, such approaches can be found in particular in
the area of warehouse automation through driverless trans-
port systems. But also picking robots can be supported by
demonstrations during the training of motor skills [6]. For the
algorithmic side of packing, bin packing, machine learning
approaches also find their way into the field in addition to
classical approximation algorithms and heuristics. Especially
due to the developments in the field of deep neural networks,
many approaches based on deep reinforcement learning have
emerged, where the agents acts as the packer (e.g. [10], [12]
[9]).
Although approaches have been published that make use of
demonstrations in the learning process, this ignores the varying
tasks and requirements that arise in practice which leads
to approaches of limited use. IRL offers a way to make
requirements and strategies from practice numerically tangible,
but its application to the bin packing problem has not yet been
evaluated.

III. FUNDAMENTALS

A. Bin Packing

The underlying algorithmic problem of the packing process
is the three-dimensional bin packing problem. We assume that
we have a load carrier that is limited in width and length.
Since in practice there is often no physical restriction on the
height, as in the case of a pallet, for example, the load carrier

is considered to be unrestricted. The packages are supposed to
be cuboid objects, which are placed orthogonally on the load
carrier. Formally, the considered problem can be defined as
follows [4]:

Input: Load carrier width W und length L with
W,L ∈ R>0, n Packages with width wi,
length li height hi und weight gi
with wi, li, hi, gi ∈ R>0 for i ∈ {0, ..., n}

Output: Coordinates (xi, yi, zi) for i ∈ {0, ..., n},
such that:

min F (x, y, z)

s.t. 0 ≤ xi + wi ≤W (1)

0 ≤ yi + li ≤ L (2)

sij + dij + uij = 1 (3)

(xj − xi) · sij ≥ wi · sij (4)

(yj − yi) · dij ≥ li · dij (5)

(zj − zi) · uij ≥ hi · uij (6)

sij , dij , uij ∈ {0, 1} (7)

xi, yi, zi ≥ 0 (8)

for i, j ∈ {0, ..., n}.
The dimensions and weights of the packages are given, as

well as the constraints defined by the load carrier. The resulting
placements of the packages are given by the output variables
xi , yi and zi for i ∈ {0, ..., n}, where n corresponds to
the number of elements to be packed. The coordinates give
the position of the front left corner of the package on the
carrier, where its front left corner of the load carrier defines
the point (0, 0, 0)T . The variables sij , uij , and dij are indicator
variables, which determine whether a package pi is located to
the left, below or behind of another package pj .
The conditions (1) and (2) ensure that each placed package
does not extend beyond the dimensions of the load carrier.
Conditions (3)-(6), on the other hand, ensure that the dimen-
sions of the ensure that the dimensions of the packages do not
overlap.
The optimization function F is represented by an abstract
function, which is parameterized by the coordinates x, y, z of
the packages. Looking at similar problems in bin packing,
these are often limited to minimizing the height and volume
and do not reflect the complex behaviour represented by the
knowledge of an experienced worker. It is therefore necessary
to replace the function F by an adequate optimization function
motivated by the explicit and implicit expert knowledge.

B. Inverse reinforcement learning
Replicating the knowledge of an expert in an artificial

system requires a way to represent its behaviour. The field of

imitation learning addresses this challenge by using recordings
in the form of demonstration data as a basis for reproducing
the behaviour. One method used for this purpose is IRL. For
this, the problem is modeled in the form of a modified Markov
decision process. This is defined as follows:

A Markov Decision Process without Reward M�R
(MDP/R) is a stochastic process that can be described by the
triple (S, A, P):
• The set of states S of M
• The set of actions A of M, where the subsets As ⊆ A

represent the possible actions in state s ∈ S
• The transition function P : S × A × S 7→ [0, 1] of M

specifies the probabilities of transitioning from a state
s ∈ S to a state s′ ∈ S by taking action a ∈ As.

The strategy executed by the expert in this case can be
defined by the policy function π : S 7→ A, which specifies the
corresponding action for each state. The sequence of states
executed by the expert’s actions is called a trajectory τ .
While in reinforcement learning a policy is sought, in the case
of IRL it is already given. It is represented by the expert’s
dataset. It is assumed that the expert’s policy is optimal.
Therefore, the desired reward function R∗ is maximized by
the policy and can be described by the following expression:

πE = argmax
π∈Π

E[R∗(s, a)], ∀s ∈ S and ∀a ∈ As

In this work, the approach of Boularias et al. Relative
Entropy Inverse Reinforcement Learning (REIRL) is im-
plemented [1]. The idea is to minimize the relative entropy
(Kullback-Leibler divergence) between an empirical distribu-
tion and a learned distribution. The missing reward function
is a linear combination of different features that describe a
state of the MDP/R. The development coefficients of the linear
combinations represent the weights of the individual features.
The sought reward function can be defined as follows:

R∗(s, a) =

k∑
i=1

θifi(s, a) = θf(s, a)

The features fi(s, a) for s ∈ S and a ∈ As numeri-
cally describe specific properties of a state. The development
coefficients θi weight these features. Due to the form of
presentation, a major advantage of the method compared to
other approaches of the IRL is the better interpretability.
The features occurring in the expert demonstrations can be
determined as follows:

f̂ =
1

|D|
∑

(s,a)∈D

f(s, a)

The function to be minimized can be formulated as follows:

g(θ) =

k∑
i=1

θif̂
τ
i − lnZ(θ)−

k∑
i=1

|θi|εi

with

Z(θ)=
∑
τ∈T

(
Q(τ) exp(

k∑
i=1

θif
τ
i)

)

where Q is a baseline policy. With the help of Importance
Sampling, the gradient is estimated on the basis of samples,
whereby the weights of the reward function can be trained.
The procedure is described as pseudocode in the algorithm 1.

Algorithm 1 Relative entropy inverse reinforcement learning

Require: demonstration data DE ∼ πE , trajectory samples
TπN ∼ πN , learning rate β, stopping criteria µ

Ensure: weights θ
1: θ0 ← ~0
2: j ← 1
3: f̂ = 1

|D|
∑

(s,a)∈D f(s, a)
4: repeat
5: for all τ ∈ TπN do
6: P (τ |θj) =

exp(θjfτ)/πN (τ)∑
τ∈TB

exp(θfτ)/πN (τ)

7: end for
8: for i = 0 to k do
9: ∆θji ← f̂i −

∑
τ∈TπN

P (τ |θj)fτi − αiεi
10: θj+1

i ← θji + β
(

∆θji

)
11: j ← j + 1
12: end for
13: until ||θj − θj−1||2 < µ
14: return θ

C. Bin-Packing in the context of IRL

1) States and Transitions: A packing order contains, in
addition to the available load carrier, a quantity of packages
to be placed. The initial state is represented by the empty
load carrier. If we place a package, we change the load.
This corresponds to a transition, where the placement of
the package represents the action and the loadings before
and after the placement represent the states involved. The
state space S of the MEP is thus composed of the possible
loadings of the carrier. These are connected by actions, i.e.
the placements of packages, which are determined by the
selection and position of the package. However, the removal
of a package is excluded. In addition, other subsequent
changes in the position of packages, such as those caused
by tipping effects, are ignored. We assume that the desired
position of a package corresponds to the actual position. The
transition function is thus deterministic.

2) Reward: In order to be able to describe a suitable reward
function in the context of IRL, features must be defined to be
able to describe the behaviour. These are properties of the load,
which are described with the help of numerical key figures. For
this purpose, features were defined and compiled within the
scope of this work to explain the strategy of a worker. For our
approach, ten features coming from the domain were used. In
addition to features describing height and weight distribution,
these also include values that can be used to evaluate the
stability of a load.

IV. EXPERIMENTS

A. Data Collection

In order to investigate the behaviour of the method
suitable demonstration data is required. These were generated
synthetically within the scope of this work. For this purpose
a pack simulator was implemented for data acquisition. This
is a graphical 3D application in which a user can virtually
process packing orders (see Fig. 1). A load carrier in the form
of a pallet and a selection of packages are made available
to the user. If the user successfully completes the packing
order, i.e. places all packages validly on the load carrier, the
application exports the result as a demonstration.

The tool was used to recreate three different strategies that
occur in logistics:

1) In the first strategy, the entire surface of the load carrier
should be used to be able to distribute the packages as
well as possible and at the same time keep the maximum
height of the load carrier to a minimum.

2) The second strategy is said to behave similarly to the
first, with the difference that a small margin should be
left to the edges of the load carrier. In practice, this is
particularly interesting if the load is to be subsequently
protected with cushioning material. Without a margin,
this would extend beyond the dimensions of the load
carrier and thus lead to problems during storage.

3) The aim of the third strategy was to generate a load that
was as stable as possible. In particular, unlike the two
previous strategies, emphasis was placed on the weight
and its distribution on the load carrier. It should be noted,
however, that a pallet is evaluated as a whole and not
each individual package.

For each of the above strategies, 100 trajectories were gener-
ated. Each trajectory included 8-12 packages.

B. Features

The features are chosen in such a way that they satisfy the
following properties: on the one hand the values of the features
should lie in the same range of values, so that a comparability
between them is guaranteed. between them is guaranteed.
Here, the interval [0, 1] ∈ R is suitable. In addition, the
features should be calculated with respect to the order, so
that a comparability between different packing orders can be
ensured.
The features used for the REIRL to describe a loading are
defined as follows:
• Relative Maximum Height

RH = 1− (height− heightmin)

(heightmax − heightmin)

where heightmin and heightmax specify the theoretical
minimum and maximum loading height given by the
packages.

(a) Simulator at the beginning of a packing order. (b) Simulator after completion of a packing order.

Fig. 1: Pack Simulator: The user of the software can virtually process packing orders. To do this, packages can be placed on
the load carrier using drag-and-drop. When all packages are on the pallet, the user can confirm the loading and save it.

• Relative Maximum Weight

RW = 1− (weight− weightmin)

(weightmax − weightmin)
.

where weightmin and weightmax specify the theoretical
minimum and maximum weight load given by the
packages.

• Relative Margins

RUM =
UM

maxi wi

RBM =
BM

maxi wi

RRM =
RM

maxi li

RLM =
LM

maxi li

where UM , BM , RM and LM specify the upper,
bottom, right and left margin given by the placements.

• Relative Packing Density

RD =

∑n
i=i Vi

(maxx −minx) · (maxy −miny) · height

where Vi specifies the volume of package i.

• Overbuilt Ratio

OBR = 1− #Packages−#1Packages
#Supporting Surfaces−#1Packages

where #1Packages specify the number of packages in
the first layer, supported by the load carrier itself.

• Overhang Ratio

OHR = 1− #Overhanging Packages−#1Packages
#Packages−#1Supporting Surfaces

where a surface is called overhanging if it is not
supported by another supporting surface, given by other
packages or the load carrier.

• Relative Barycarrier

RBC = 1− cz
height

where cz specifies the height of the center of gravity given
by

cz =
1∑n
i=1 wi

·
n∑
i=1

zi · gi

C. Implementation

The simulator was developed in Unity3D and uses the
proprietary physics simulation to ensure valid loading. The
resulting loadings from the program, which correspond to
the states of the MDP, are repärsent using three-dimensional
interval trees. The packages span one interval per dimension,
which is managed in a separate tree data structure. The
data structure allows efficient validation of placements in an
asymptotic runtime of O(k+ log n), where k is the output set
and n is the number of packages already present in the tree [5].

D. Results

As part of the evaluation, two specific questions were
examined:

1) Can we generally recognize and represent different pack-
ing strategies using the methodology?

2) How many trajectories are needed to recognize a packing
strategy?

(a) Strategy 1 (b) Strategy 2 (c) Strategy 3

Fig. 2: Resulting weights of REIRL evaluation. The weight of a feature is an indicator of the degree to which it is expressed
within the demonstration data.

(a) Strategy 1 (b) Strategy 2 (c) Strategy 3

Fig. 3: Variances of experts performance with increasing number of available trajectories.

To answer the first question, the weights of the respective
features can be examined. These are visualized in the Figure
2. Here, the bars represent the weights of the features.

It can be seen that both height and weight distribution (RH
and RW) have a high value in all three strategies, which is
also desirable for all of those. Also, the values of Overhang
Ratio (OHR), Relative Density (RD) and Relative Barcenter
(RBC) have a notable share in all three strategies. Compared
to Strategy 1, the relevance of the margin is evident in Strategy
2. The four features describing it (RUM, RBM, RRM, RLM)
each show roughly equal weight, suggesting a uniformity of
margin in the demonstration data. The fact that the edge was
detected, in contrast to strategy 1, speaks to the method used.
The third strategy represents the most complex. Especially the
Relative Density (RD), Overbuild Ratio (OBR) and Relative
Barycenter (RBC) are suitable to evaluate the stability of
a loading. The three values should be maximized as far
as possible. It can be seen from the results that the OBR
in particular has gained weight compared to the other two
strategies. The RBC can also show a higher percentage. Only
the RD is lower than in the other two experiments. It would
be desirable that here this would be higher at the expense of
the RW or RH.
To investigate the number of expert demonstrations required,
the average score determined by the REIRL was examined

using the calculated reward function. For this purpose, the
available amount of demonstrations was limited in a stepwise
manner and the effects were studied. The results are visualized
in Figure 3. The X-axis represents how many of the available
trajectories were used. The specified quantity was drawn
equally distributed from the entirety. For each subset, 10,000
experiments were performed. On the Y-axis the average expert
performance is plotted, which results from the evaluation of
the entirety of the trajectories by means of the found reward
function. The box plots show the distributions of the results.
For the first strategy, we can see a strong scatter with small
amounts of data. If we increase this, on the one hand the
average performance of the expert increases, on the other hand
we also reduce the scatter. Strategies 2 and 3 tend to show a
similar picture, but in strategy 2 in particular the dispersion is
greater than in the other two strategies, even with high data
volumes. In addition, it can be seen here that strategy 1 not
only achieves higher performance than the other two strategies,
but also requires less data to do so.

V. DISCUSSION AND OUTLOOK

The evaluation showed that the application of IRL is a
possibility for the identification of packing strategies in lo-
gistics. Due to the interepretability of the resulting reward
function, the features of individual strategies could be modeled
and recognized. The evaluations also give us a scope for the

number of trajectories needed to do this.
However, this approach required defining the features by hand,
which runs the risk of disregarding relevant aspects, especially
for even more complex strategies. Here the application of al-
ternative IRL methods, which do without an explicit definition
of features, could be a possibility to avoid this problem. Also,
for the possible transfer into practice, an alternative to data
collection has to be created. Here, systems using image and
sensor information offer the possibility to record the packing
process in an automated way in a warehouse and to gain expert
demonstrations, even in much larger quantities. In addition,
interaction with the system should be made feasible in the
context of the HITL framework.
The intention behind the work was also to combine the result,
i.e. the factors to be optimized, with a bin packer. Here it is
necessary to design and implement suitable procedures of a
further utilization of the reward function. Due to the technical
approach, methods of reinforcement learning, for example, are
a feasible option here.

REFERENCES

[1] A. Boularias, J. Kober, and J. Peters. Relative entropy inverse rein-
forcement learning. In G. Gordon, D. Dunson, and M. Dudı́k, editors,
Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, volume 15 of Proceedings of Machine
Learning Research, pages 182–189, Fort Lauderdale, FL, USA, 11–13
Apr 2011. PMLR.

[2] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy.
End-to-end driving via conditional imitation learning. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages
4693–4700, 2018.

[3] C. Finn, S. Levine, and P. Abbeel. Guided cost learning: Deep inverse
optimal control via policy optimization. CoRR, abs/1603.00448, 2016.

[4] H. Hu, X. Zhang, X. Yan, L. Wang, and Y. Xu. Solving a new 3d bin
packing problem with deep reinforcement learning method, 2017.

[5] D. T. Lee. Computational Geometry I, page 1. Chapman and Hall/CRC,
2 edition, 2010.

[6] J. Mahler and K. Goldberg. Learning deep policies for robot bin picking
by simulating robust grasping sequences. In S. Levine, V. Vanhoucke,
and K. Goldberg, editors, Proceedings of the 1st Annual Conference
on Robot Learning, volume 78 of Proceedings of Machine Learning
Research, pages 515–524. PMLR, 13–15 Nov 2017.

[7] B. Mättig and H. Foot. Approach to improving training of human work-
ers in industrial applications through the use of intelligence augmen-
tation and human-in-the-loop. International Conference on Computer
Science and Education, 15(1):201–213, 7 2020.

[8] K. Mülling, A. Boularias, B. Mohler, B. Schölkopf, and J. Peters.
Learning strategies in table tennis using inverse reinforcement learning.
Biological cybernetics, 108, 04 2014.

[9] A. V. Puche and S. Lee. Online 3d bin packing reinforcement learning
solution with buffer, 2022.

[10] R. Verma, A. Singhal, H. Khadilkar, A. Basumatary, S. Nayak, H. V.
Singh, S. Kumar, and R. Sinha. A generalized reinforcement learning
algorithm for online 3d bin-packing, 2020.

[11] X. Wu, L. Xiao, Y. Sun, J. Zhang, T. Ma, and L. He. A survey of
human-in-the-loop for machine learning. Future Generation Computer
Systems, 135:364–381, 2022.

[12] J. Zhang, B. Zi, and X. Ge. Attend2pack: Bin packing through deep
reinforcement learning with attention, 2021.

