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Abstract— Recent advancements in the field of image 

generation models have been particularly notable for diffusion 

models. Imagen has the most remarkable image generation 

capabilities among these models, particularly at high 

resolutions. However, Imagen comes with limitations, as 

creating high-quality results requires considerable 

computational resources and lengthy training times. To address 

these limitations, we propose PoolImagen, a novel and improved 

variant of Imagen that combines high performance with low 

computational costs. PoolImagen introduces various 

improvements to overcome the constraints of Imagen. Notably, 

we adopted the idea, first propose in MetaFormer, which 

suggests replacing the attention module with a pooling structure 

in the transformer architecture of Imagen to mitigate the issues 

related to increased training costs and computational 

complexity. Additionally, considering the influence of text 

encoder size on text-to-image transformation quality, we 

incorporate the large language models (e.g. flan-t5-xxl), an 

extension of the t5 model that offers more parameters and 

refined text processing capabilities. With a well-trained 

transformer, PoolImagen achieves image generation with 

consistent performance and significantly accelerated training 

velocities. In experiments based on bird image datasets, 

PoolImagen demonstrates improved performance in terms of 

Fréchet Inception Distance (FID) and training time. In the case 

of the bird datasets, PoolImagen exhibits an approximately 

11.29% improvement in FID compared to Imagen, while 

training time is reduced by 2.25 times. In addition, we 

conducted additional experiments to evaluate ability of 

PoolImagen to represent domain-specific features in generated 

images. These findings emphasize the potential of PoolImagen 

as a powerful tool for rapidly generating text-to-image outputs 

and suggest promising directions for enhancing the future 

performance of diffusion models. 
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I. INTRODUCTION 

Various forms of multimodal learning have gained 
significant attention recently, particularly emphasizing text-
to-image synthesis [1, 2] and image-text contrastive learning 
[3, 4]. Diffusion-based text-to-image models [5-7] have 
demonstrated remarkable progress in generating realistic 
content using text prompts. These models have revolutionized 
the research landscape and garnered extensive interest due to 
their innovative image generation [8] and editing capabilities 
[9] . They have a profound impact on content creation [10], 
image synthesis , video synthesis [11], inpainting [12], and 
super-resolution [2], among others. However, this impact is 

accompanied by a significant increase in computational 
demands required to execute these models.  

Imagen [13], a text-to-image diffusion model aimed at 
high-realism and high-resolution, enhances quality through a 
larger text encoder. However, it has been observed that its 
effectiveness comes at the cost of extensive computations and 
computational demand, leading to prolonged training periods. 
In this context, Imagen incorporates the attention mechanism 
from the transformer structure within the enhanced U-Net 
architecture [14].  

In the context of contemporary transformers [15] have 
commonly employed attention mechanisms [16, 17] . In 
recent research endeavors have ventured into challenging the 
conventional approaches  to attention. To overcome this 
limitation, MetaFormer [18] have been introduced, explored 
a novel avenue by replacing the attention mechanism with an 
exceedingly simplistic non-parametric operator known as 
pooling in the token mixer component [19]. Remarkably, this 
substitution demonstrated competitive performance in image 
classification tasks [20]. In other words, it has been revealed 
that the main driving force behind the effectiveness of the 
transformer does not solely rely on attention. Instead, it is the 
combined performance of various other components that 
plays a crucial role [21].  

In this paper, we present PoolImagen, a diffusion text-to-
image model that uses pooling within a transformer 
architecture [18] to resolve the difficulties associated with 
diffusion. We focus on faster training and better image 
production to achieve this. The simple computing procedure 
of pooling compresses data and extracts crucial visual features 
[22]. By incorporating pooling into the U-net architecture, we 
aimed to accelerate the learning process. This modification 
allowed us to expedite the training process without sacrificing 
image generation performance. Pooling for the attention 
mechanism balanced learning speed and performance. Thus, 
the model learns faster and produces images that are superior.  

In addition, we achieved this through alterations in the U-
Net architecture and the incorporation of a generic large 
language model [23, 24] as the text encoder. The text encoder 
applied to PoolImagen is the Flan t5-xxl [25], which, in 
contrast to the conventional t5 text encoder [24], offers 
superior performance for text-based tasks. Flan t5-xxl is an 
extension of the t5 model that has been trained with additional 
data and time, resulting in more advanced text processing 
capabilities than the standard t5 model.  

Furthermore, PoolImagen was evaluated using a datasets: 
the well-known, bird dataset, CUB [26]. We compared the 



Fréchet Inception Distance (FID) [27] scores and training 
times for various image sizes in both datasets. As a result, it 
achieves performance in maintaining the quality of generated 
images while also shortening the training time.  

In summary, the main contributions of this study are as 
follows: 1) In the U-net structure, we used pooling instead of 
attention mechanism to improve the learning speed. By 
maintaining the performance, we were able to increase the 
learning speed. 2) We managed to accomplish text-to-image 
synthesis by utilizing a new text encoder, Flan t5-xxl [25], 
which provides sophisticated text processing. 3) Our objective 
is to demonstrate experimentally the viability of PoolImagen 
for accelerating learning and generating realistic images. 

II. RELATED WORKS 

A. Diffusion Probabilistic Model 

The diffusion probability model was initially introduced 
in [6-8] . Its successful implementation in the field of image 
generation was initially observed for small-scale images, but 
its performance improved significantly for relatively larger 
images as demonstrated in [28]. This diffusion model's 
architecture has continued to evolve, incorporating significant 
advances in learning and sampling methodologies, such as 
Denoising Diffusion Probabilistic Model (DDPM) [5], 
Denoising Diffusion Implicit Model (DDIM) [29], and Score-
Based Diffusion [30]. 

The image diffusion technique is often implemented by 
directly utilizing pixel color information from the training 
data [30]. In such instances, researchers examine 
computational resource conservation solutions, especially for 
high-resolution images [31]. Usually, these strategies rely on 
neural network architectures such as U-net. To optimize 
computational resources for training diffusion models, 
"Latent Images" formed the basis for the Latent Diffusion 
Model (LDM) [2], which has now been extended to Stable 
Diffusion [2] to improve learning. 

B. Text-to-Image Diffusion 

The diffusion model can be effectively trained with 
conditioning input channels, allowing for the generation of 
conditional images [7, 8]. Recent applications of the diffusion 
model in text-to-image synthesis have attracted considerable 
attention, especially for their innovative synthesis capabilities.  

Typically, this is accomplished by translating textual 
inputs into latent vectors using pre-trained language models 
such as CLIP [3]. For instance, Glide [7] is a text-guided 
diffusion model that facilitates image generation and 
modification. Disco Diffusion [32], on the other hand, is a 
CLIP-guided implementation designed to handle text prompts. 
Stable Diffusion [2] is a large-scale implementation of latent 
diffusion developed to generate text-to-images. Imagen [13], 
on the other hand, utilizes a text-to-image structure that avoids 
the use of latent images and diffuses pixels directly using a 
pyramidal structure. 

Imagen, a Diffusion Text-to-image model [13], combines 
large-scale transformer language models for text 
understanding with diffusion models for high-resolution 
image production. Imagen competes with DALL-E 2 [8] and 
outperforms it in evaluations, especially in terms of high-

resolution image generation. This benefit comes from the 
revelation that pretraining on text-only corpora with large-
scale language models like T5 [24] successfully encodes text. 

In Imagen [13], boosting the language model improves 
sample quality and image-text alignment more than 
increasing the diffusion model.work also presents an efficient 
method for training the diffusion model using pre-trained text 
encodings and large language models. 

C. Pooling for Poolformer 

The transformer architecture has demonstrated 
remarkable performance in various computer vision tasks , 
with the key to this success often attributed to the attention 
mechanism . As a result, ongoing research has focused on how 
to effectively enhance this attention mechanism. By 
introducing periodic shift methods, models such as Swin 
Transformer [33] have attempted to enhance the attention 
structure. Similarly, models such as ResMLP [34] and MLP-
Mixer [35] have achieved high performance by substituting 
attention modules with simplified spatial MLPs . While these 
models consistently deliver exceptional performance, the 
adoption of the transformer architecture in a large-scale model 
incurs a significant increase in training costs and 
computational requirements. 

This sthdy introduces the MetaFormer [18], a general 
architecture without attention structure restrictions, to 
ocercome these difficulties. The MetaFormer provides 
flexible token mixer component swaps without requiring 
transformer attention structure. To demonstrate that attention 
is not the core of the transformer architecture, but that superior 
performance arises from the combination of various modules, 
the paper conducts experiments by replacing the attention 
module with an extremely simple pooling structure. 

The results of these experiments indicate that the PoolFormer 
[18] model continues to deliver superior results even when 
attention is replaced by pooling. This model utilizes spatial 
pooling operators to divide input images into smaller 
fragments before combining the extracted features from each 
fragment to represent the entire image. It highlights the 
importance of spatial pooling operators and shows how to 
attain good performance with less parameters and computing 
effort. Using these findings as a foundation, this paper 
proposes PoolImagen, which maintains efficacy amid faster 
training speeds. 

III. METHOD 

Our goal is to develop a diffusion model-based image 
synthesis framework with improved U-Net structure and 
learning speed. Present Imagen uses self-attention in U-Net 
transformer module. Accordingly, many researchers thought 
the transformer's great performance was due to the attention-
based token mixer module, but spatial MLP [34, 35]  replaced 
it and it still performed well. Even though attention and 
attention-based token aggregator modules have been widely 
studied, self-attention and spatial MLP are computationally 
costly. To address these issues, in this paper, the Poolformer 
framework was introduced in PoolImagen. As illustrated in 
Figure 1, PoolImagen consists of a text encoder that maps text 
to a sequence of embeddings and a cascade of conditional 
diffusion models that map these embeddings. In the following 
subsections, we describe each of these components in detail. 



A. Pretrained text Encoder 

Text-to-image models require robust semantic text 
encoders capable of comprehending the complexity and 
compositionality of diverse natural language inputs. Text 
encoders trained on paired image-text data are standard in 
recent text-to-image models; they can be trained from scratch 
[1, 7] or on image-text data , such as CLIP [8], that has been 
pretrained. The image-text training objectives imply that these 
text encoders are capable of encoding visually expressive and 
meaningful representations that are especially pertinent to the 
text-to-image generation task. In addition, large language 
models can be used to encode text for text-to-image 
generation. Recent advancements in large language models 
(e.g., BERT [23], GPT [36] , and T5 [24]) have resulted in 
substantially improved textual comprehension and generative 
capacities. Language models are trained on a text-only corpus 
that is substantially larger than paired image-text data, 
exposing them to a text distribution that is extremely rich and 
extensive. Furthermore, these models have significantly 
larger model sizes compared to the text encoders used in 
existing image-text models [3, 4]. (e.g., PaLM [37] has 540B 
parameters, while CoCa [38] has a 1B parameter text encoder).  

Thus, it is natural to investigate text encoders for the text-
to-image task. In our model, PoolImagen, we utilized the pre-
trained text encoder Flan-t5-XXL [25]. To streamline our 
approach for greater efficiency, we have frozen the weights of 
these text encoders. This approach allows offline embedding 
computation and low computational overhead and memory 
use during text-to-image model training. We found that text 
encoder size improves text-to-image conversion. 
Consequently, we chose the flan-t5-XXL encoder is an 
extension of the t5 model that conforms well to text and 
provides more sophisticated text processing capabilities than 
the standard t5 encoder.  

B. Efficient model arichitecture 

The structure in general is illustrated in figure 1 (a) below. 
Through a text encoder, the entered caption is expressed 
numerically, and this expression is used as a condition to 
generate the result value 𝑧. The image generator utilizes a 
diffusion model, leveraging embeddings and sample noise 
from 𝑧𝑡  to proceed with training, ultimately generating 
images based on the input text. 

The architecture of the model is built upon U-Net. For 
denoising, the position value was included in the encoding to 
conduct conditioning at each time step. Encoding is generated 
at each timestep and applied to U-Net, where images, time, 
and text are all encoded, facilitating conditioning. 

We enhanced the architecture of the model for rapid 
learning. Our model is simpler and converges faster than 
Imagen by using a more efficient transformer block. The U-
Net architecture in PoolImagen, as shown in Figure 2 (b), 
consists of the following components: Conv layers in the 
encoder section, 4 down-sampling blocks, 2 ResNet blocks, 
and Transformer blocks in the middle layer, and 4 up-
sampling blocks and Conv layers in the decoder section.  

In a typical U-Net, down-sampling block, the down-samp 

ling operation occurs after the convolutions, and in an up-
sampling block, the up-sampling operation occurs prior the 
convolution. Figure 2 (c) illustrates the down-sampling and 

up-sampling blocks of U-Net, respectively. We employed an 
efficient U-Net that flipped the order of convolution for down-
sampling and up-sampling blocks to boost forward pass speed 
and avoid performance deterioration. ResNet blocks have 8 
grouped convolution layers and are used depending on 
parameters. 

Furthermore, in PoolImagen, we replace with pooling 
instead of self-attention in the token mixer section of the 
transformer structure. This modification enables us to 
maintain performance while employing fewer parameters and 
computations, which has a positive effect on training velocity. 

C. Training specifications 

To compare the efficacy of the text-to-image diffusion 
model [13], we employed the same learning procedure as 
Imagen but with several adjustments in PoolImagen. During 
the training of PoolImagen, we utilized the Adam optimizer 
[39] with a learning rate set to 1𝑒 − 4 and conducted training 
for 4000 epochs. 

U-Net used an 8-channel model with a 64x64 input image. 
Each down- and up-sampling layer had twice as many 
channels due to dimensional scaling. For each layer, ResNet 
[40] blocks were set to (1, 2, 4).  

In the diffusion model, we used the L2 loss [41] as the loss 
function and set the number of timesteps to 200. During image 
generation, the model employs text and other conditional 
information, and the conditional dropout  probability is 
specified as 0.1. The model is trained using a batch size of 16 
on one A6000 GPU and one RTX 3090 GPU with 48GB and 
24GB of memory, respectively. The Python version used was 
3.8.15, and the Pytorch version was 2.0.1 with CUDA 11.7 
and 1.12.1 with CUDA 11.3, respectively. 

Imagen, the baseline model, has a structure that enhances 
resolution by employing the image generated by the diffusion 
model and the text encoding value as conditions. However, in 
this study, we focused on generating images without 
increasing resolution due to considerations related to time and 
computational costs. To achieve this, we applied the same 
training details as the baseline model. 

 

Fig 1. Structure of the proposed PoolImagen. PoolImagen uses a frozen test 
encoder to encode the input text into text embeddings. A conditional diffusion 

model with inputs of noise vector and embedding generates an image. 

 



IV. EXPERIMENTS 

In this section, we evaluate the performance of 
PoolImagen on a datasets: Caltech-UCSD Birds-200 (CUB) 
[26]. CUB datasets comprises 11,788 images representing 
200 different bird species. Each image is annotated with 
attributes describing the color and shape of the bird. We 
utilized these annotations to create multiple-sentence text 
captions that provide textual descriptions for each image. 

For our experiments, we generated 64x64 pixel images for 
all datasets and evaluated their quality utilizing the Fréchet 
Inception Distance (FID) [27] along various dimensions. In 
addition, we examined the relationship between the training 
speed and the FID scores of the synthetic images. 

A. Baseline models 

 Since the proposed model is a modification of Imagen [13], 
Imagen was chosen as the baseline for the experiments. In 
order to demonstrate that the improvements made in 
PoolImagen were not caused by unrelated changes, two 
important criteria were considered. Firstly, Imagen was 
trained using the google/t5-base-xxl [24] text encoder, which 
comprises approximately 18 million parameters. In contrast, 
the google/flan-t5-xxl [25] used in PoolImagen has 
approximately 25 million parameters. This emphasizes the 
significance of employing a large text encoder when 
generating text-based images. Second, Imagen utilized self-
attention, a commonly used component in the transformer 
architecture. PoolImagen, with its modified transformer 

structure utilizing pooling, maintained performance while 
addressing the issue of computational complexity. This choice 
of the base model aimed to emphasize the significance of 
addressing computational complexity while obtaining 
performance gains through pooling.  

B. Quantitative evaluation  

We evaluate the Fréchet Inception Distance (FID) [27] 
between randomly sampled real images and generated images, 
which is one of the conventional methodologies to assess 
generative models. We provide two evaluations to compare 
the generated quality and training time for each dataset and 
each caption. We evaluate randomly conditioned images with 
various image dimensions and datasets by employing FID. 

Figure 3 indicates that PoolImagen performs similarly to 

Imagen in FID relative to training time, but with much shorter 

training times. We demonstrate that the use of a pooling 

structure in PoolImagen improves training time performance 

compared to Imagen. For example, in the case of generating 

16-dimensional CUB bird images, PoolImagen shows an FID 

value of 181.24, which is approximately 11.29% different 

from the baseline model, while reducing the training time to 8 

days, which is 2.25 times quicker. Comparing training 

durations, the three models are approximately 1.68 times, 2.25 

times, and 2.8 times, respectively, faster. Moreover, FID and 

training time perform better in 8-dimensions. In conclusion, 
despite the fact that FID may imply relatively inferior 

performance on the CUB dataset, performance of PoolImagen 

is successfully proven when compared to training time. 

Fig 2. This is the improved U-Net structure used in the diffusion model. (b) represents the overall U-Net structure, which is a conditional diffusion model that 

maps text embeddings into 64x64 images. (c) shows DBlock and UBlock of efficient U-Net, respectively. The dashed blocks for the down-sampling block 

(DBlock) and up-sampling block (UBlock) are optional components. 
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C. Evaluation with generated Images 

In the experiments, we trained PoolImagen using the CUB 
datasets. The architecture of PoolImagen was kept the same 
while specific details were altered to evaluate its efficacy. To 
enhance the image quality, we set the timesteps to 100. As 
depicted in Figure 3, we experimentally demonstrated the 
image generation capability of PoolImagen, which 
demonstrated relatively superior FID results. In addition, 
Figure 4 represents 16-dimensional images derived from the 
CUB dataset, effectively capturing the features of the CUB 
training set. For instance on the right, visually matching 
images to the text such as "this large waterbird has a black 
crown and nape, long black bill, black wings, neck, chest, and 
belly, with various shades of yellow" were observed. This 
proves PoolImagen is capable of overcoming timing 
constraints without losing image quality. In conclusion, we 
effectively demonstrated that the model can represent visual 
features and generate images rapidly. 

V. CONCLUSION 

The study introduces PoolImagen, a refined variant of 
Imagen, a diffusion model in image generation. While Imagen 
has faced challenges with computational burden and 
prolonged training times, PoolImagen addresses these issues 
without compromising performance. Inspired by the 
MetaFormer model, PoolImagen incorporates a pooling 
mechanism in place of the attention module, reducing 
computational complexity and accelerating training times. 
This pooling operation efficiently extracts features, striking a 
balance between speed and performance. 

Text encoding capabilities are enhanced by integrating 
Flan t5-xxl, an advanced version of the t5 model, improving 
text-to-image transformations. Empirical evaluations on the 
CUB bird dataset demonstrate compelling results. 
PoolImagen not only maintains but also improves Fréchet 
Inception Distance (FID) scores, outperforming Imagen by 
approximately 11.29% in FID while reducing training time by 
a factor of 2.25. 

In summary, PoolImagen represents a significant 
advancement in text-to-image synthesis, addressing 
computational and temporal limitations of Imagen. 
Architectural modifications and improved text encoding 

contribute to superior performance. Future research should 
explore further optimizations, recognizing PoolImagen's 
potential as an efficient tool for text-to-image synthesis and 
paving the way for refining and expanding diffusion models 
in this field. 
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