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Abstract—The Internet of Things requires intelligent decision
making in many scenarios. To this end, resources available at the
individual nodes for sensing or computing, or both, can be lever-
aged. This results in approaches known as participatory sensing
and federated learning, respectively. We investigate the simultane-
ous implementation of both, through a distributed approach based
on empowering local nodes with game theoretic decision making.
A global objective of energy minimization is combined with the
individual node’s optimization of local expenditure for sensing
and transmitting data over multiple learning rounds. We present
extensive evaluations of this technique, based on both a theoretical
framework and experiments in a simulated network scenario with
real data. Such a distributed approach can reach a desired level of
accuracy for federated learning without a centralized supervision
of the data collector. However, depending on the weight attributed
to the local costs of the single node, it may also result in a
significantly high Price of Anarchy (from 1.28 onwards). Thus,
we argue for the need of incentive mechanisms, possibly based on
Age of Information of the single nodes.

Index Terms—Federated learning; Energy consumption; Par-
ticipatory sensing; Internet of things; Game theory.

I. INTRODUCTION

Participatory sensing, facilitated by the proliferation of mo-
bile devices and the Internet of Things (IoT), has emerged as
a promising paradigm for collecting large-scale data from end
nodes and exploiting them for many applications [1], [2]. It
implies a voluntary contribution of individuals to data provi-
sion, forming a distributed sensing network that harnesses user-
generated data for diverse applications, such as environmental
monitoring, urban planning, and healthcare [3]–[5].

Federated learning (FL) is a distributed approach to artificial
intelligence, where devices collaboratively train a shared model
with private data, so as to split the computational burden [6]. In
context-aware applications, FL can be superimposed to sensing
as a collaborative approach for efficient extraction of ambient
information from data, leveraging the collective intelligence and
computational power of a diverse set of devices to train machine
learning models without a costly centralization [7].

Leveraging the distribution of training tasks and shifting
the computation from cloud servers to local edge devices
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reduces the energy consumption associated with transmitting
large amounts of data to a central server for processing [8].
As the learning process takes place directly on or close to the
participating devices, energy requirements are decreased [9].

Thus, we investigate a combined paradigm of data manage-
ment, where both sensing and extrapolation of meaning from
sensed data are performed by the end nodes, and the role of
the network coordinator is to merge the local decision process.
Such an integration of participatory sensing and FL can be
analyzed through the lens of game theory [10], [11], whose
main purpose is to study the strategic interactions among self-
interested entities. This can shed light on the resulting system
dynamics and highlight relevant trade-offs.

We consider a scenario, where N end nodes are connected to
a central data sink that coordinates their federation. Each end
node has access to a private dataset, either sensed directly from
the environment, or assigned by the data sink as a partition
of a global dataset, and partake in the learning process on
a voluntary basis [12], [13]. Their decision about whether to
participate or not is iterated through multiple rounds with a
probabilistic approach [14]. We assume all nodes to behave
identically and not exchange information with each other,
thus they have identical and independently distributed (i.i.d.)
probability pi to participate in each round, computed locally.
This can be extended to correlated/communicating nodes along
the lines of [15].

The common approach is to handle the participation in a
centralized fashion at the sink [16], which also assigns the data
to the end nodes for local training and handles the federation
by merging the resulting parameters. Even in this context, it
would be convenient to alternate the participation of nodes over
multiple rounds to obtain faster convergence of the FL, avoiding
overfitting or entrapment, which would unnecessarily increase
the duration of the training as well as cause overconsumption of
energy [17], [18]. Thus, an optimal probability of participation
for the single node can be computed, which minimizes the time
to reach a target accuracy of the FL.

In a fully distributed and participatory context, which is
the approach of choice if nodes perform their measurements
locally [2], we can consider that nodes act based on their selfish
objective, individually computed, minimizing a linear com-
bination of duration and cost. This implementation resounds



as a Tragedy of the Commons scenario [19], since in large
IoT systems the end nodes are expected to realize that their
individual contribution gives little benefit to the overall duration
of the task, and opt for reduced action. This implies an overall
suboptimal participation rate throughout the entire network, and
a high Price of Anarchy (PoA) [20].

In this spirit, game theory may allow us to exploit partic-
ipatory sensing and FL to their fullest. Strategic interactions
and incentives of participants can ensure effectiveness and
energy sustainability of collaborative systems [21] and our
study paves the way for designing less power-hungry data-
driven applications that benefit from the collective intelligence
of diverse participants.

The rest of this paper is organized as follows. In Section II,
we discuss related work. Section III describes the system model
and discusses our proposed approach to combine federated
learning with participatory sensing. We show numerical results
in Section IV and we finally conclude in Section V.

II. RELATED WORK

Development of federated learning strategies and minimiza-
tion of energy consumption are tight-knit goals for future net-
works exploiting the intelligence available at the end nodes [8].
For example, [17] proposes an online energy-aware dynamic
worker scheduling policy, which maximizes the average number
of workers scheduled for gradient update at each iteration under
a long-term energy constraint. In [22], the reasoning about the
energy consumption being related to the use computation re-
sources is also extended to include the wireless communication
exchanges. Such proposals compare well with what we consider
to be the optimal centralized allocation in the following.

At the same time, participatory sensing and federated learn-
ing are scenarios where the actions of individual agents mu-
tually influence the outcome, and it makes sense to invoke an
application of game theory [12], [20]. In this context, the shared
goal of the activity is at odds with the individual cost paid
by the users, which can be declined in multiple ways, e.g., to
security and privacy [23] of data owners.

We argue that the quintessential motivation behind dis-
tributed approaches to sensing and learning lies in optimizing
the resource usage [16], simultaneously aiming to save com-
munication overhead and energy [24].

In [11], the problem of recruiting participants for a federated
learning is studied from a game theoretic perspective. The
starting point is similar to what we argue in this paper, that
is, rational data owners may be unwilling to participate in
a collaborative learning process due to excessive resource
consumption. Therefore, the authors propose some incentives
for their participation designed through game theoretic mecha-
nisms. However, the paper takes a high level perspective, where
the motivation behind the individual nodes requiring incentives
lies more in their selfishness towards an economic advantage.
Instead, we consider this to be more directly related to energy
consumption, which in our opinion gives a stronger justification
even to well-meaning data owners.

The investigation of incentive design is also traditionally
approached through auctions, capturing the supply and demand
interaction [13]. Similarly, [10] explores the Nash equilibria
(NEs) of a participatory intervention of the nodes minimizing
age of information (AoI).

Differently from these contributions, we argue that the prob-
lems of participation in federated learning are not just related
to the interaction of data exchange and resource utilization, but
more fundamentally rooted in the energy consumption [9]. To
obtain a factual energy saving from a participatory paradigm,
the objective must be shared by all nodes, and the efficiency
of strategic choices must be evaluated from this standpoint,
i.e., to see whether uncoordinated nodes can harmonize their
operation, without unnecessary energy inefficiencies.

Despite the importance of participatory federated learning,
this particular issue was scarcely addressed in the literature,
which is why our contribution fills a gap and validate such an
approach for IoT scenarios.

III. SYSTEM MODEL

We consider an FL scenario with a set N = {1 . . . N}
of nodes that need to collaborate to the same learning task,
communicating their model weights to a central receiver that
acts as a sink. The receiver is in charge of collecting the weights
from the participating nodes and to combine them, to obtain
a global training model. In particular, we consider the FedAvg
algorithm [25] where each node i ∈ N trains for E local epochs
with a loss function ℓi on its local dataset the global model
and then shares the model updates with the central server via
an IEEE 802.11ax wireless link. In the algorithm formulation
the receiver, i.e, a central server, is in charge of selecting the
subset of clients that participate in the current round.

We give a special twist on this scenario, giving to each node
the ability to control its own probability pi to participate in
the task. Differently from approaches where a globally optimal
involvement is sought for the end nodes [14], [16], here the
participation probability is computed by each node individually,
based on local evaluations about the time for task completion
and energy consumption. This probability is set a priori and
cannot be changed later on. The task is successful when a target
validation accuracy is reached at the receiver’s side. At every
round, each node decides whether to participate in the learning
task according to the local probability. Thus, only a subset of
nodes Pt participates in learning round t. Starting from the
model in [24], we evaluate the energy consumption of each
node depending on the decision to participate in FL round t or
not. If client i participates, the energy spent for training is:

Et
train,i = P t

hw,iT
t
train,i, (1)

where P t
hw,i is the average power drained by the hardware, i.e.,

CPU, GPU, and DRAM, and T t
train,i is the training process

duration. The energy spent for communication is

Etx = PtxTtx, (2)

where Ptx and Ttx are transmission power and time, respec-
tively. Note that Etx is the same for each client in each FL round



since the size of the model updates is constant during the whole
learning process. Finally, all participating nodes wait for the
conclusion of the current FL round. Let Tround be the maximum
round duration defined by the sink. All participating devices
have to start the upload process within Tround, otherwise their
contribution will be discarded. The idle energy is computed as

Et
idle,i = Pidle,i(Tround − T t

train,i), (3)

with Pidle,i the power consumed while idling and Tround −
T t
train,i the idling time. The total energy is given by

Et
i = Et

train,i + Etx + Et
idle,i. (4)

If a node j does not join the current FL round its energy
consumption is given by the idle energy

Ej = Pidle,jTround (5)

since the node is waiting for the conclusion of the round. The
total energy consumption is

Et =
∑
i∈Pt

Et
i +

∑
j∈N\Pt

Ej . (6)

The energy consumed for d rounds is

E =

d∑
t=1

Et. (7)

The energy consumption is minimized for the lowest duration
d of the FL task, which is concluded when a target value for the
validation accuracy is consistently met [22]. This is dependent
on the mean number of nodes participating in a given round, as
we will later argue in Section IV. The probability that a given
number of nodes are active at any given time follows a Poisson-
Binomial distribution, because participation of each node is
independent of the others. The learning task duration follows a
Poisson-Binomial distribution D ∼ PoiBin(pi), i∈N and the
duration value d(k) is a function of the number of participating
nodes k. It follows from probability theory that the first moment
of this distribution is calculated as

E[D] =

N∑
i=0

d(i) · P [m = i], (8)

where P [m = i] is the probability that exactly i nodes
participate, computed in closed form as [26]

P [m] =

N∑
n=0

{
e

−j2πnm
N+1

N∏
k=1

[pk(e
j2πn
N+1 −1)+1]

}
N + 1

. (9)

We formalize this distributed optimization task as a static
game of complete information G = {N ,A,U}, where N is
the set of players, i.e., the nodes in the network, A is the set
of actions, namely the participation probability pi ∈ [0, 1] for
each player i, and U is the set of the utilities for each player
[21]. In order to promote client participation, we implement an
incentive mechanism based on the expected AoI of the single
node, computed as the ratio of the second order moment and
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Fig. 1. Total energy spent (E) vs. number of rounds to converge (d).

two times the first order moment of the inter-participation time
Y as a function of the node’s participation probability.

E[δi] =
E[Y 2]

2E[Y ]
=

1

pi
− 1

2
. (10)

We define the utility of each player i as

ui = −E[D]− γ log(E[δi])− cpi, (11)

where E[D] follows (8), log(E[δi]) is the natural logarithm
of (10), γ is the weight assigned to the incentive and c is a
cost factor taking into account the energy consumption for
the node when it participates. This equation combines the
two goals of the clients: minimizing the number of rounds to
reach convergence and the associated participation cost [3]. It
furthermore rewards the clients when they decide to participate
actively in the federated learning task.

The NE is found through a one-sided optimization of the
utility, which implies that each player takes a best response to
the unchanged actions of the others [10]. Thus, we solve the
system of differential equations

∂ui

∂pi
= 0, i = 1, . . . , N (12)

which can be obtained in closed form from (8), (9) and (10).
Due to symmetry, this will result in the same value p for all
nodes, i.e., p = p1 = . . . = pN .

We further calculate the Price of Anarchy (PoA) to evaluate
how much a decentralized solution deteriorates the optimal
centralized one’s performance. The PoA is calculated as [19]

PoA =
maxs∈NE u(s)

mins∈S u(s)
(13)

where, at the numerator, we take strategy s from the set of all
NEs with the highest cost, and at the denominator, the optimal
centralized strategy that minimizes the cost.



Parameter Description Value
Fe

d.
L

ea
rn

in
g

|w| Number of model parameters 11 181 642
Sw ResNet-18 model parameters size 44.73 MB
η Learning rate 0.01
N Number of total clients 50
E Local epochs number 5

Tround Maximum training time 10s
ℓi Local loss function Sparse Cat. Crossentropy

Tacc Target accuracy on CIFAR-10 0.73
Pidle Idle power consumption 96.85 W

C
om

m
un

ic
at

io
n

(I
E

E
E

80
2.

11
ax

)

Ptx Tx power for edge devices 9 dBm
σleg Legacy OFDM symbol duration 4 µs
Nsc Number of subcarriers (20 MHz) 234
Nss Number of spatial streams 1
Te Empty slot duration 9 µs

TSIFS SIFS duration 16 µs
TDIFS DIFS duration 34 µs
TPHY Preamble duration 20 µs

THE−SU HE single-user field duration 100 µs
Ls Size OFDM symbol 24 bits

LRTS Length of an RTS packet 160 bits
LCTS Length of a CTS packet 112 bits
LACK Length of an ACK packet 240 bits
LSF Length of service field 16 bits

LMAC Length of MAC header 320 bits
CW Contention window (fixed) 15

TABLE I
SIMULATION PARAMETERS.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

We consider a scenario with N = 50 nodes that collabora-
tively learn ResNet-18 [27], to correctly classify the images in
the CIFAR-10 [28] dataset, containing 50 000 training samples
that are randomly but fairly divided across all nodes. The input
features are 32×32 colored images divided into 10 classes.
To evaluate the global model, we extract 7000 samples as a
validation set from the test partition of CIFAR-10. ResNet-
18 (|w|) has 11 181 642 trainable parameters, which require
44.73MB (Sw) if stored as float32. In every round, each
client executes E = 5 local epochs of Stochastic Gradient
Descent using sparse categorical accuracy as local loss function
(ℓi). Convergence is reached when the global model validation
accuracy (Tacc) is ≥ 0.73 for 3 consecutive rounds to avoid
performance spikes. When the training is concluded, each
node shares the model update with the central server using
transmission power (Ptx)=9 dBm. Simulation parameters are
reported in Table I and a comprehensive description of the
communication model can be found in [24]. Experiments run
on a server equipped with two Intel Xeon 6230, 188 GB of
RAM, and an RTX 2080 Ti.

B. Numerical Results

We now report the results of experiments and simulations.
To obtain a realistic model for FL from the perspective of game
theory, we executed a wide array of simulations. First, we mea-
sured the energy consumption (E) and the number of rounds
to reach convergence for several participation probabilities
(pi ∈ [0.1, 0.7]) on the scenario described before. Table II(a)
shows the number of rounds to reach convergence (d) and the
total energy consumption (E). To assess the training energy
(Etrain), we use Codecarbon [29] a Python library that estimates

pi E d

0.100 1056.81 74
0.125 1060.25 73
0.130 830.90 57
0.150 1073.33 73
0.160 962.90 65
0.175 600.42 40
0.200 861.87 57
0.225 691.04 45
0.250 638.27 41
0.300 720.66 45
0.350 641.78 39
0.400 691.90 41
0.410 811.87 48
0.420 647.21 38
0.430 736.57 43
0.440 686.69 40
0.450 827.07 48
0.460 884.16 51
0.470 698.03 40
0.480 700.97 40
0.490 686.84 39
0.500 689.25 39
0.510 656.18 37
0.520 660.68 37
0.530 663.44 37
0.540 702.24 39
0.550 741.38 41
0.560 781.14 43
0.570 692.42 38
0.580 659.89 36
0.590 662.56 36
0.600 627.10 34
0.610 666.57 36
0.620 707.24 38
0.630 804.00 43
0.640 865.10 46
0.650 716.03 38
0.660 698.39 37
0.670 816.24 43
0.680 724.07 38
0.690 612.04 32
0.700 711.64 37

(a) One single seed

pi d σ(d) E σ(E)

0.100 74.50 11.47 1072.14 123.43
0.125 68.00 13.09 1005.97 140.49
0.130 56.00 5.29 862.84 60.19
0.150 62.50 8.81 950.26 100.14
0.160 57.25 6.13 887.80 61.31
0.175 51.00 9.42 797.18 145.67
0.200 51.00 4.55 816.96 37.86
0.225 45.50 3.70 747.44 54.52
0.250 51.00 9.56 803.96 132.64
0.300 46.75 2.75 768.25 41.50
0.350 43.00 5.23 724.40 73.21
0.400 43.25 2.22 734.25 33.22
0.410 44.50 5.32 758.88 62.29
0.420 42.75 4.11 725.76 59.45
0.430 42.75 3.30 734.69 35.41
0.440 43.00 4.08 732.95 49.07
0.450 43.50 4.43 751.96 61.11
0.460 42.75 5.56 750.14 89.77
0.470 39.50 3.11 698.25 33.15
0.480 39.25 6.70 696.30 71.74
0.490 40.67 2.89 709.99 33.48
0.500 40.00 0.82 704.10 11.11
0.510 41.75 3.30 719.96 43.71
0.520 42.50 7.33 729.13 81.90
0.530 40.00 3.16 703.01 37.23
0.540 41.75 4.27 726.11 44.34
0.550 39.50 2.65 706.41 35.12
0.560 40.25 2.99 719.03 48.51
0.570 40.50 4.43 712.93 46.15
0.580 46.25 14.15 771.83 152.41
0.590 39.00 2.58 694.74 27.70
0.600 39.00 4.24 691.24 51.19
0.610 37.75 2.87 682.34 30.05
0.620 39.75 5.56 708.59 58.31
0.630 37.75 3.50 697.93 70.71
0.640 39.75 5.91 726.61 102.68
0.650 39.00 2.16 702.75 23.75
0.660 40.75 4.99 719.79 48.48
0.670 40.00 4.69 725.12 75.90
0.680 41.25 4.03 728.89 36.60
0.690 37.50 3.87 676.75 45.17
0.700 38.25 5.50 696.29 59.19

(b) Average results

TABLE II
NUMBER OF ROUNDS (d) AND ENERGY (E) IN WH SPENT TO CONVERGE

WITH DIFFERENT PARTICIPATION PROBABILITIES.

the hardware power consumption as per (1). The results show
that low participation probabilities, i.e., pi ∈ [0.15, 0.3] do not
lead to good performance. The best performance is achieved
by pi = 0.69 that converges in 32 rounds, with 612.04 Wh
of energy spent. Fig. 1 shows an approximately linear trend
between d and E , justifying the assumption of Section III.

To increase the generality of our results, we repeated the
simulation with different random seeds. This influences both
the decision of the nodes to join the current round (or not),
and the initialization of the global model. Simulation runs are
executed on the same hardware described before using four
RTX2080 Ti in parallel. Due to Codecarbon limitations, it is
not possible to distinguish the energy consumption of different
processes running in parallel on the same machine, so the
total energy is estimated from the linear interpolation shown in
Fig. 1. Table II(b) reports the average and standard deviation
for the number of rounds and energy to converge.
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Fig. 3. NE solution of the participation probability for various cost factors c
and incentive weights γ.

To obtain results for the theoretical setup, we modeled
the duration of the FL task using the data in Table II(b).
Specifically, we used a polynomial regression model to fit
random points with a normal distribution as per mean and
standard deviation of d reported in the table. With said model,
we calculated the utility as in Fig. 2 for c=0 and γ=0.

Fig. 3 is a contour plot that shows the NE solution for p with
different values for the cost factor c and the incentive weight
γ. As expected, the nodes start to collaborate more by giving
more weight to the incentive offsetting the cost they need to pay
for the participation at the FL task. However for higher values
of γ it is evident that there is a tradeoff between the cost and
the incentive. This is probably due to the shape of our utility
function that penalizes the nodes if all of them participate in
the task. For the following plots we chose to fix γ ≈ 0.6 as it
is the value that obtains the highest participation probability.

Fig. 4 shows the participation probability chosen by the
nodes by global maximization of the utility and the NE as
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Fig. 4. Nodes’ participation probability in the optimal centralized solution and
at the NE with and without incentive.
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Fig. 5. Utility obtained by the optimal centralized nodes’ participation
probability and at the NE for various values of the c parameter.

obtained by solving (12). For c = 0 the optimal participation
probability is approximately p = 0.61, while the NE without
incentive obtains p = 0.24. For increasing cost values this
solution quickly falls to p = 0. This is an evident Tragedy of the
Commons [19], since selfish users share a common resource,
yet their individual participation has little influence on the
payoff, so they do not cooperate to a full extent, damaging both
the collective and ultimately their own interest. The incentive
mechanism based on AoI proves to be effective in improving
nodes collaboration as the highest probability is p = 0.6. This
solution then quickly falls to lower participation as the incentive
is not enough to offset the cost but it never reaches p = 0.

Fig. 5 shows the evolution of the utility obtained by the
solutions. Here it is evident the sudden drop in the NE
solution without incentive as soon as the participation prob-
ability approaches 0. Conversely, the NE with incentive has a
significant drop from the optimum, but then becomes stable.
By considering the PoA reported in Fig. 6 we can appreciate
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Fig. 6. PoA as in (13) for increasing values of the parameter c.

the importance of the incentive on the NE solution. Not having
any kind of incentive obtains PoA ≃ 1.28 for c = 0, this
means that a distributed solution with these constraints has a
28% loss over the performance of a centralized participation
schedule. This becomes even worse for higher cost factors and
eventually explodes to infinity. The NE with incentive based
on AoI manages to obtain PoA ≈ 1 and does not grow as
rapidly as the previous case meaning that this solution allows
transmissions even when they become more costly.

V. CONCLUSIONS

We explored a collaborative federated learning scenario,
where individual nodes are in control of their participation
to the learning task. The overall objective is to minimize the
task duration and consequently the energy consumption. We
tackled this challenge through the instruments of game theory
[12] deriving the NE of the resulting allocation, and ultimately
computing its energetic performance.

A fully distributed optimization is not feasible without an
incentive mechanism in place, as in the best case there would be
a 28% performance drop with respect to a centralized solution.

Thus, we introduced an incentive mechanism for the nodes
based on AoI that is able to offset the participation cost that
they need to sustain [11]. A future extension of this work may
consider other more sophisticated incentive mechanisms.
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