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Abstract—The rising incidence of cancer diagnoses 

necessitates efficient tumor detection methods in CT scans. 

Manual tumor identification by physicians is labor-intensive 

and demands high level of focus. To address these challenges, 

we introduce a deep learning model for automated tumor 

detection. Our model employs a streamlined version of the U-

Net Transformer (UNETR), where the original transformer 

layers are replaced by Squeeze and Excitation (SE) layers for 

more efficient computation. This modification improves the 

Dice score for tumor segmentation and enhances the ability to 

distinguish between organ and tumor pixels. Furthermore, we 

establish that concurrent segmentation of both the organ and 

the tumor significantly improves the overall performance in 

tumor segmentation tasks. To evaluate this claim, we trained 

the model using two types of datasets: one containing both 

organ and tumor information, and another containing only 

tumor information. The former approach yielded more 

accurate tumor localization, while the latter proved ineffective 

due to the absence of organ context. Our findings suggest that 

incorporating organ information significantly improves the 

training and prediction accuracy for tumor segmentation. 

Keywords—organ segmentation, tumor segmentation, 

medical segmentation, deep learning, Squeeze and Excitation 

network, Transformer 

I. INTRODUCTION 

Numerous Convolution Neural Network (CNN) based 
models conducting medical image segmentation tasks have 
been proposed [1-4]. For example, U-Net segments organs 
in Computed Tomography (CT) scan using encoder and 
decoder architecture [5]. The encoder extracts features from 
CT scan, while the decoder reconstructs the output image 
leveraging the feature representations received from the 
encoder. Also, UNET++ is proposed for the medical 
segmentation tasks which has nested architecture that every 
encoder and decoder layers are connected through dense  
connection [6]. With the dense connections, UNET++ can 
integrate small features from the input image. Moreover, 
CNN based architecture denoted as KiU-NET has been 
proposed [7]. The KiU-NET has two different branches in 
parallel which are U-Net and Kite-Net. Motivated from U-
Net, Kite-Net upsamples feature to high dimensional feature 
space and downsamples the feature, thereby facilitating the 
e acquisition of relatively small features. Consequently, 
KiU-Net conducts detailed prediction with two networks.  

Inspired by development in Natural Language 
Processing (NLP), the transformer is applied to vision 
models. Recently, the appearance of Vision Transformers 
(ViT) that adopts the transformer has promoted significant 
advancement in computer vision field surpassing the CNN-
based models [8-12]. The feature extraction through the 

transformer improves generalization ability to various 
datasets and has made significant advance in image 
segmentation by fusing the patch information. Motivated 
from ViT, UNet Transformer (UNETR) utilizes an 
advantage of the transformer.  Multi-Head Self Attention 
(MHSA) layer in transformer gradually extracts the 
information among patches which is transmitted to the 
decoder subsequently. Lastly, the decoder inherits the patch 
information and reconstructs image through deconvolution 
operations. 

In this paper, we propose a lightweight UNETR 
conducting kidney and kidney tumor segmentation task 
from the CT scans. We enhance the efficiency of the 
UNETR architecture by replacing the MHSA layer with the 
Squeeze and Excitation (SE) layer, which computes the 
attention among feature channels [13-18]. As a result, The 
SE layer facilitates the capacity to rank the feature channels. 

We conduct experiments using Kidney Tumor 
Segmentation Dataset (KiTS19) which includes the CT 
scans with the annotation of kidney and kidney tumor. We 
train our model using a dataset that has both kidney and 
kidney tumor information. Then, we compare accuracy 
between our proposed model and a baseline model being 
trained with a different dataset that contains only tumor 
information. 

II. RELATED WORKS 

A. Squeeze and Excitation Network 

CNNs have demonstrated their efficiency in addressing 
vision tasks dominating the deep learning field that conducts 
vision tasks [1-4]. CNN layer identifies localized spatial 
features across input channels and treats input channels 
equally, without considering attention between input 
channels. However, SE network examines attention of input 
channels to perceive interdependency between feature 
channels.  

SE network has two operations that are squeeze operation 
and excitation operation. Squeeze operation is executed by 
global average pooling. This operation entails the 
compression of input features, effectively combining each 
2D feature channel into a single vector. The excitation 
operation generates a vector for input channels. Once the 
vector is determined, the vector is channel-wisely multiplied 
with input channels scaling the importance between input 
channels, thereby establishing a rank among the input 
channels. 

 

 



 

 

Fig 1. The structure of our proposed model. (A) represents overall architecture of the model. (B) is the structure of SE layer. One column vector implies 

attention between 2D channels.

 

B. U-Net 

The CNN-based U-Net is initially designed for 
biomedical image segmentation [5]. The U-Net 
architecture consists of contracting path and expansive 
path. The contracting path captures the context and 
compress the input image information. The expansive path 
which is symmetric with respect to the contracting path 
enables precise feature localization. The expansive path 
upsamples feature maps until the final output dimension of 
U-Net is identical to input dimension. 

C. Vision Transformer 

Transformers are originally introduced within the 
domain of machine translation. Subsequently, transformers 
emerged as dominant models for NLP tasks [19, 20]. 
Inspired by the success of transformer in NLP tasks, the 
researchers attempt to integrate transformer into CNNs to 
enhance the performance in computer vision tasks [8, 9, 21, 
22]. The ViT is one of the first attempt that employs pure 
transformer-based architecture, demonstrating competitive 
performance against CNNs in the domain of image 
classification tasks. Unlike CNNs, ViT based models 
possess the capacity to capture the global contextual 
information by means of patch images comparisons.  

D. UNet Transformer 

UNETR is designed to perform 3D medical 
segmentation tasks [23-25]. Motivated from ViT, UNETR 
leverages Multi-Head Self Attention (MHSA) layer to 
inherit the advantages. MHSA layer performs feature 

analysis among 3D patches that are uniformly split from 
the original input image. 

UNETR is comprised of two parts which are encoder, 
decoder. The encoder extracts patch information across 
multiple channels and produces feature channels, 
employing a sequence of MHSA and MLP layers.  The 
decoder is comprised of 3D deconvolution and convolution 
layers that contribute to the output image reconstruction. 
The skip connection between the encoder and decoder is 
employed to convey extracted information from the 
encoder to the decoder at various layers. With these 
components, UNETR proficiently generates the desired 
output. 

E. Kidney and Kidey Tumor Segmentation Dataset 

KiTS19 is a CT scan dataset that has a CT image and 
annotation of right and left kidneys and kidney tumors. 
The annotation process has been done by medical students 
under supervision of a professional urologic oncologist. 
The dimensions of slices are identical for every slice. 
However, the volumes differ for each CT scan that 
minimum number of slices in the CT scan is 29 and the 
maximum is 1059. KiTS19 dataset is available at 
https://github.com/neheller/kits19. 

 

III. METHODS 

In the absence of organ context, accurate prediction of 
tumor localization becomes notably challenging. The 
dimension of tumor is considerably small compared to the 



CT scan and kidney, making the tumor detection 
demanding. Consequently, providing the organ and tumor 
locations concurrently to deep learning model helps the 
model to locate tumors in detail. Additionally, we propose 
modified UNETR model that MHSA layers in UNETR 
are replaced with SE layers. 

An overview of the proposed model is described in 
Figure 1. Our proposed model treats 3D CT scans as an 
input. Treating every pixel in the CT scans causes 
substantial computational complexity. Therefore, inspired 
by UNETR, we utilize patch embedding layer that 
compress input image into a vector. The patch embedding 

layer divides an input image (𝑥 ∈ 𝑅𝐻 × 𝑊 × 𝐷 ) into 3D 

patches (𝑥𝑝  ∈ 𝑅𝑁 ×𝑃3
) and 𝑁 = 𝐻𝑊𝐷/𝑃3  is number of 

patches. The patch embedding layer transforms patch 
sequences into tokens. Due to the lack of positional 
information in tokens, a learnable positional encoding 
vector is added to tokens [26, 27]. The embedding 
equation can be represented as 

            𝑧𝑡𝑜𝑘𝑒𝑛𝑠 = [𝑝1𝐸; 𝑝2𝐸; ⋯ ; 𝑝𝑁𝐸] + 𝐸𝑝𝑜𝑠           (1) 

where 𝑧𝑡𝑜𝑘𝑒𝑛𝑠 is token vector which is transformed from 
patches; 𝑝𝑛 is a patch vector; 𝐸 is a matrix that transforms 
patch vectors into tokens; 𝐸𝑝𝑜𝑠  is a learnable positional 

encoding vector that injects positional information. 

UNETR utilizes MHSA layers to evaluate the 
relevance between the patches. However, the 
computational complexity of MHSA layer grows 
exponentially as the resolution of image increases. To 
resolve the increasing computational complexity, we 
employ SE layer instead of MHSA layer. The SE layer 
focuses on important features which is similar role of 
MHSA layer. Adopting SE layer, we build hierarchical 
Squeeze and Excitation Block (SEBlock) that SE layers 
and MLP layers are connected sequentially. We construct 
an encoder architecture with 2, 4 and 6 SEBlocks 
connected successively. The outputs from [2nd, 4th, 6th] 
SEBlocks are concatenated to decoder layers to fuse 
extracted features between the encoder and decoder.   

To maintain weight values stable in SEBlock, the layer 
normalization is applied for every layer. The operation of 
the SEBlock can be represented by the following 
equations: 

                       𝑆𝑙 = 𝐿𝑁(𝑀𝐿𝑃(𝐿𝑁(𝑣𝑙−1 × 𝑆𝑙−1))              () 

where 𝑆𝑛 is input of SE layer; 𝐿𝑁 is layer normalization; 
𝑀𝐿𝑃  is MLP layer; 𝑣𝑛 is a vector that injects attention 
into feature map channels. 

The decoder block consists of 3D deconvolutional 
layers to reconstruct images from the feature maps. The 
decoder block increases the resolution of feature maps 
through deconvolutional operation. This process is 
repeated until the resolution of image is identical to input 
resolution. At the output stage, the two output channels 
predict the location of organ and tumor individually. 

For the loss calculation and model performance 
evaluation, the Dice coefficient is used [28-30]. The 
formula of Dice coefficient can be represented by the 
following equations:  

𝑆𝑑𝑖𝑐𝑒 =
2×(𝑃𝑡𝑟𝑢𝑒×𝑃𝑝𝑟𝑒𝑑)

𝑃𝑡𝑟𝑢𝑒+𝑃𝑝𝑟𝑒𝑑
,                        (3)                         

where 𝑆𝑑𝑖𝑐𝑒  indicates Dice coefficient; 𝑃𝑡𝑟𝑢𝑒  is a binary 
matrix that has location information of organ or tumor 
[28]. In the datasets, the value one indicates organ and 
tumor pixels and zero indicates the background; 𝑃𝑝𝑟𝑒𝑑  is a 

binary matrix predicted by the model, indicating the 
locations of the organ and tumor; The total Dice loss 
formula is represented as follows: 

    𝑆𝑑𝑖𝑐𝑒,𝑡𝑜𝑡𝑎𝑙 = 0.65 × 𝑆𝑑𝑖𝑐𝑒,𝑜𝑟𝑔𝑎𝑛 + 0.35 × 𝑆𝑑𝑖𝑐𝑒,𝑡𝑢𝑚𝑜𝑟 ,  (4) 

where 𝑆𝑑𝑖𝑐𝑒,𝑡𝑜𝑡𝑎𝑙  is total Dice coefficient that dice 

coefficients of organ and tumor are added in the ratio of 
65 and 35; 𝑆𝑑𝑖𝑐𝑒,𝑜𝑟𝑔𝑎𝑛  is Dice coefficient calculated 

between the predicted organ segmentation and ground 
truth; 𝑆𝑑𝑖𝑐𝑒,𝑡𝑢𝑚𝑜𝑟  is Dice coefficient calculated between 

the predicted tumor segmentation and ground truth. 

  The two Dice losses are calculated for organ and 
tumor prediction independently and added with different 
weights. For Dice loss of tumor prediction, the weight 
value of 0.35 is applied since the size of tumors is 
considerably small compared to CT scan and kidney. The 
total Dice loss is minimized by backpropagation algorithm 
[33]. 

 

IV. RESULTS 

We train our model with KiTS19 dataset for medical 
segmentation task. KiTS19 has 544 3D CT scans which 
are annotated by medical students under the supervision of 
the author of a paper describing KiTS19. The CT scans 
consist of 29 to 1059 slices that have 512 × 512 pixels 
for a single slice. To overcome the lack of computational 
resources, we reshaped the dataset into 128 × 128 × 128 
using linear interpolation during pre-processing. 
Decreasing the size of CT scans causes tumor pixels to 
combine with neighboring pixels resulting tumor pixels to 
vanish. Therefore, we excluded 54 datasets that do not 
contain tumor pixels. The min-max scaling is applied to 
normalize the values in each dataset. 

For the kidney segmentation task, 489 CT volumes 
with kidney body and kidney tumor annotations are used. 
We split the dataset into training set, validation set and 
test set at ratio 70:20:10. The model is trained with 
AdamW optimizer applying the uniform learning rate of 
0.0001 [31]. In addition, we employ data augmentation 
technique that is rotating images in range 0 to 10 degrees 
[32]. 



 

Fig 2. The Dice scores of our proposed model. The blue colored lines are 

Dice scores that trained with both organ and tumor dataset. The orange 

colored lines are Dice scores that trained with only tumor dataset. For the 

dark colored lines, moving average is applied. 

The performance of our proposed model is estimated 
with Dice score. There are two types of models. Our 
model has two channels which learns the location of organ 
and tumor. However, the baseline model has only one 
channel that learns only the location of tumor. We 
compare the Dice scores from two models. Our model 
outperforms for 0.0711 percent point compared to the 
baseline model. As a result, the support of the organ 
information contributes to the prediction of tumor. 

MHSA uses key, query, and value matrices to evaluate 
attention between the feature channels resulting huge 
computational burden. The SE layer is similar to MHSA 
layer that evaluates the attention between the feature 
channels. By adapting SE layer in place of MHSA layer, 
the computational complexity decreases by 13.9 percent 
and still can estimate the importance among the feature 
channels.  

 

Fig 3. The organ and tumor prediction of our proposed model. The first 
row images are input images which are the CT scans. The second row 

images are the organ ground truth. The third row images are the tumor 

ground truth. The fourth row images are the organ predictions. The fifth 

row images are the tumor predictions. 

V. CONCLUSION 

This paper proposed a modified UNETR that MHSA 
layers are substituted with SE layers. MHSA utilized key, 
query and value matrices to calculate the attention of 
feature channels requiring substantial calculation. 
However, SE layer had only one vector for calculating the 
attention. As a result, the computational complexity 
decreased by 13.9 percent. 

Our proposed model captured kidney and kidney 
tumor simultaneously. Also, our model performed 
improved segmentation capacity on tumor compared to 
segmenting tumor solely. Owing to providing the kidney 
information to tumor segmentation channel through 
backpropagation, the Dice score on tumor was enhanced 
by 0.0711 percent point. Our results demonstrated that the 
injection of organ information segments more precisely 
compared to segmenting kidney tumor without the organ 
information. 

However, the study has its limitation. The dataset used 
for training the model comprises only 489 CT images 
annotated by medical students, which is not sufficiently 
diverse to generalize the model performance. Given the 
limitation, future research should aim to expand the dataset 
to include a more diverse range of CT images, annotated 
by experienced radiologists. The expansion of the dataset 
could provide a more robust evaluation of the model 
performance. 

Moreover, future research could attempt combining 
additional features, such as patient history or other 
biomarkers, to consider diverse medical factors. Advanced 
techniques like generative adversarial network or diffusion 
model could also be employed to improve the robustness 
against variations in tumor segmentation. 

ACKNOWLEDGMENT 

This work was supported by the National Research 
Foundation of Korea (NRF) grant funded by the Korea 
government (MSIT) (No. RS-2023-00251528), and Korea 
Institute for Advancement of Technology (KIAT) grant 
funded by the Korea Government (MOTIE) (P0020967, 
Advanced Training Program for Smart Sensor Engineers)  
 

REFERENCES 

[1] Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, 
T., Wang, X., Wang, G., and Cai, J.: ‘Recent advances in 
convolutional neural networks’, Pattern recognition, 2018, 77, pp. 
354-377 

[2] Albawi, S., Mohammed, T.A., and Al-Zawi, S.: ‘Understanding of 
a convolutional neural network’, in Editor (Ed.)^(Eds.): ‘Book 
Understanding of a convolutional neural network’ (Ieee, 2017, 
edn.), pp. 1-6 

[3] Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D.D., and Chen, M.: 
‘Medical image classification with convolutional neural network’, 
in Editor (Ed.)^(Eds.): ‘Book Medical image classification with 
convolutional neural network’ (IEEE, 2014, edn.), pp. 844-848 

[4] O'Shea, K., and Nash, R.: ‘An introduction to convolutional neural 
networks’, arXiv preprint arXiv:1511.08458, 2015 

[5]  Ronneberger, O., Fischer, P., and Brox, T.: ‘U-net: Convolutional 
networks for biomedical image segmentation’, in Editor 
(Ed.)^(Eds.): ‘Book U-net: Convolutional networks for biomedical 
image segmentation’ (Springer, 2015, edn.), pp. 234-241 

[6]  Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., and Liang, J.: 
‘Unet++: A nested u-net architecture for medical image 



segmentation’, in Editor (Ed.)^(Eds.): ‘Book Unet++: A nested u-
net architecture for medical image segmentation’ (Springer, 2018, 
edn.), pp. 3-11 

[7]  Valanarasu, J.M.J., Sindagi, V.A., Hacihaliloglu, I., and Patel, 
V.M.: ‘Kiu-net: Overcomplete convolutional architectures for 
biomedical image and volumetric segmentation’, IEEE 
Transactions on Medical Imaging, 2021, 41, (4), pp. 965-976 

[8]  Zhou, D., Kang, B., Jin, X., Yang, L., Lian, X., Jiang, Z., Hou, Q., 
and Feng, J.: ‘Deepvit: Towards deeper vision transformer’, arXiv 
preprint arXiv:2103.11886, 2021 

[9]  Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., and 
Shah, M.: ‘Transformers in vision: A survey’, ACM computing 
surveys (CSUR), 2022, 54, (10s), pp. 1-41 

[10]  Yao, T., Li, Y., Pan, Y., Wang, Y., Zhang, X.-P., and Mei, T.: 
‘Dual vision transformer’, IEEE transactions on pattern analysis 
and machine intelligence, 2023 

[11]  Chen, J., He, Y., Frey, E.C., Li, Y., and Du, Y.: ‘Vit-v-net: Vision 
transformer for unsupervised volumetric medical image 
registration’, arXiv preprint arXiv:2104.06468, 2021 

[12]  Lee, S.H., Lee, S., and Song, B.C.: ‘Vision transformer for small-
size datasets’, arXiv preprint arXiv:2112.13492, 2021 

[13]  Hu, J., Shen, L., and Sun, G.: ‘Squeeze-and-excitation networks’, 
in Editor (Ed.)^(Eds.): ‘Book Squeeze-and-excitation networks’ 
(2018, edn.), pp. 7132-7141 

[14]  Cheng, X., Li, X., Yang, J., and Tai, Y.: ‘SESR: Single image 
super resolution with recursive squeeze and excitation networks’, 
in Editor (Ed.)^(Eds.): ‘Book SESR: Single image super resolution 
with recursive squeeze and excitation networks’ (IEEE, 2018, edn.), 
pp. 147-152 

[15]  Roy, S.K., Dubey, S.R., Chatterjee, S., and Baran Chaudhuri, B.: 
‘FuSENet: fused squeeze‐and‐excitation network for 
spectral‐spatial hyperspectral image classification’, IET Image 
Processing, 2020, 14, (8), pp. 1653-1661 

[16]  Gu, J., Sun, X., Zhang, Y., Fu, K., and Wang, L.: ‘Deep residual 
squeeze and excitation network for remote sensing image super-
resolution’, Remote Sensing, 2019, 11, (15), pp. 1817 

[17]  Choi, S.R., and Lee, M.: ‘Estimating the prognosis of low-grade 
glioma with gene attention using multi-omics and multi-modal 
schemes’, Biology, 2022, 11, (10), pp. 1462 

[18]  Lee, M.: ‘An ensemble deep learning model with a gene attention 
mechanism for estimating the prognosis of low-grade glioma’, 
Biology, 2022, 11, (4), pp. 586 

[19]  Kalyan, K.S., Rajasekharan, A., and Sangeetha, S.: ‘Ammus: A 
survey of transformer-based pretrained models in natural language 
processing’, arXiv preprint arXiv:2108.05542, 2021 

[20] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., 
Cistac, P., Rault, T., Louf, R., and Funtowicz, M.: ‘Transformers: 
State-of-the-art natural language processing’, in Editor (Ed.)^(Eds.): 
‘Book Transformers: State-of-the-art natural language processing’ 
(2020, edn.), pp. 38-45 

[21]  Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, 
X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., and 

Gelly, S.: ‘An image is worth 16x16 words: Transformers for 
image recognition at scale’, arXiv preprint arXiv:2010.11929, 2020 

[22]  d’Ascoli, S., Touvron, H., Leavitt, M.L., Morcos, A.S., Biroli, G., 
and Sagun, L.: ‘Convit: Improving vision transformers with soft 
convolutional inductive biases’, in Editor (Ed.)^(Eds.): ‘Book 
Convit: Improving vision transformers with soft convolutional 
inductive biases’ (PMLR, 2021, edn.), pp. 2286-2296 

[23]  Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., 
Landman, B., Roth, H.R., and Xu, D.: ‘Unetr: Transformers for 3d 
medical image segmentation’, in Editor (Ed.)^(Eds.): ‘Book Unetr: 
Transformers for 3d medical image segmentation’ (2022, edn.), pp. 
574-584 

[24]  Tao, H., Mao, K., and Zhao, Y.: ‘DBT-UNETR: Double Branch 
Transformer with Cross Fusion for 3D Medical Image 
Segmentation’, in Editor (Ed.)^(Eds.): ‘Book DBT-UNETR: 
Double Branch Transformer with Cross Fusion for 3D Medical 
Image Segmentation’ (IEEE, 2022, edn.), pp. 1213-1218 

[25] Chu, H., De la O Arévalo, L.R., Tang, W., Ma, B., Li, Y., De Biase, 
A., Both, S., Langendijk, J.A., van Ooijen, P., and Sijtsema, N.M.: 
‘Swin UNETR for Tumor and Lymph Node Segmentation Using 
3D PET/CT Imaging: A Transfer Learning Approach’: ‘3D Head 
and Neck Tumor Segmentation in PET/CT Challenge’ (Springer, 
2022), pp. 114-120 

[26]  Chen, P.-C., Tsai, H., Bhojanapalli, S., Chung, H.W., Chang, Y.-
W., and Ferng, C.-S.: ‘A simple and effective positional encoding 
for transformers’, arXiv preprint arXiv:2104.08698, 2021 

[27]  Wang, Y.-A., and Chen, Y.-N.: ‘What do position embeddings 
learn? an empirical study of pre-trained language model positional 
encoding’, arXiv preprint arXiv:2010.04903, 2020 

[28]  Ghosal, S., Xie, A., and Shah, P.: ‘Uncertainty quantified deep 
learning for predicting dice coefficient of digital histopathology 
image segmentation’, arXiv preprint arXiv:2109.00115, 2021 

[29]  Bertels, J., Eelbode, T., Berman, M., Vandermeulen, D., Maes, F., 
Bisschops, R., and Blaschko, M.B.: ‘Optimizing the dice score and 
jaccard index for medical image segmentation: Theory and 
practice’, in Editor (Ed.)^(Eds.): ‘Book Optimizing the dice score 
and jaccard index for medical image segmentation: Theory and 
practice’ (Springer, 2019, edn.), pp. 92-100 

[30]  Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., and Jorge 
Cardoso, M.: ‘Generalised dice overlap as a deep learning loss 
function for highly unbalanced segmentations’, in Editor 
(Ed.)^(Eds.): ‘Book Generalised dice overlap as a deep learning 
loss function for highly unbalanced segmentations’ (Springer, 2017, 
edn.), pp. 240-248 

[31]  Loshchilov, I., and Hutter, F.: ‘Decoupled weight decay 
regularization’, arXiv preprint arXiv:1711.05101, 2017 

[32]  Shijie, J., Ping, W., Peiyi, J., and Siping, H.: ‘Research on data 
augmentation for image classification based on convolution neural 
networks’, in Editor (Ed.)^(Eds.): ‘Book Research on data 
augmentation for image classification based on convolution neural 
networks’ (IEEE, 2017, edn.), pp. 4165-4170 

[33]  Rumelhart, D.E., Hinton, G.E., and Williams, R.J.: ‘Learning 
representations by back-propagating errors’, nature, 1986, 323, 
(6088), pp. 533-536 

 


