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Abstract—5G revolutionizes connectivity with network slicing,
but non-uniform slice deployment poses challenges. Efficient slice
handover mechanisms and predictive learning offer solutions. We
propose Long Short-Term Memory (LSTM) based prediction of
network slice traffic demands for proactive resource management
to resolve challenges of mobility management and non-uniform
slice deployment within a registration area. Thereby, allowing
seamless service provision throughout the registration area. Our
proposed model shows excellent results in predicting the number
of received requests for all available slices. These results are then
utilized to deduce the average slice demand for each service in the
network. The obtained results are beneficial for configuring the
slice resources proactively in order to provide seamless service
to mobile users throughout the registration area, regardless of
the non-uniformity in slice deployment among different tracking
areas.

Index Terms—5G, 5G-Advanced, Network Slicing, Mobility
management, Slice Handover, Resource Management.

I. INTRODUCTION

5G technology heralds a transformative era in connec-
tivity, delivering unprecedented versatility and performance
in wireless networks. Central to this revolution is network
slicing, a pivotal architectural innovation exemplifying 5G’s
dynamic capabilities. Network slicing facilitates the creation
of dedicated, isolated virtual networks within a shared physical
infrastructure, tailored for diverse use cases and applications
[1]. This paradigm shift hinges on the principle of resource
customization to meet specific demands. However, amidst
network slicing’s promises of flexibility, a critical challenge
surfaces: mobility management within these intricately par-
titioned network slices. Mobility, essential for seamless de-
vice and user movement across the network, becomes intri-
cate when each slice operates as a distinct, self-contained
ecosystem with unique performance criteria. The importance
of addressing mobility management within network slicing
cannot be overstated. As the 5G ecosystem expands and diver-
sifies, mobile networks face escalating demands. Whether for
autonomous vehicle navigation, immersive augmented reality,
or the orchestration of massive IoT deployments, uninter-
rupted mobility is paramount [2]. It profoundly influences
service quality, user experiences, and the seamless execution of
mission-critical applications. Consequently, resolving mobility
management challenges within network slicing is pivotal for
unlocking 5G’s full potential and harnessing its capabilities
across an array of industries.

One of the predominant challenges inherent to 5G network
slicing is the deployment of slices that are non-uniform
across the network. The Third Generation Partnership Project
(3GPP) assumed a homogeneous service support among all
tracking areas within a registration area until Rel-17. However,
in terms of real deployments, it is not feasible. 3GPP is
now working on the challenge of non-uniform deployment
of slices within the registration area in its Rel-18 [3]. This
non-uniformity can lead to several adverse consequences,
including service interruptions when the slice service area
border is crossed as well as non-homogeneous service support
throughout the registration area. In a dynamic 5G ecosystem,
where various slices coexist, each catering to distinct service
requirements, the proper orchestration and deployment of these
slices become crucial. When not adequately managed, this
non-uniformity can result in disparities in service quality
and availability. This non-homogeneous service support can
impede the realization of 5G’s promise of ubiquitous, seamless
connectivity and underscores the critical role that effective
slice management plays in addressing these challenges and
ensuring a consistent and reliable user experience across the
entire registration area [4].

Addressing the challenge of non-uniform slice deployment
is crucial but deploying new slices uniformly across the
registration area can be cost-prohibitive. Hence, exploring
cost-effective alternatives is essential. Efficient slice handover
emerges as a promising solution, mitigating mobility manage-
ment issues and ensuring seamless service delivery. Efficient
slice handover mechanisms dynamically allocate network re-
sources, eliminating the need for extensive uniform slice de-
ployment. This adaptive approach optimizes resource utiliza-
tion and minimizes service interruptions as users and devices
move between different tracking areas within a registration
area [5]. Furthermore, in anticipation of 3GPP’s intelligence
infusion into networking operations in Rel-18, integrating
prediction learning into network management proves wise.
Predictive models can foresee slice demand patterns, enabling
proactive resource allocation for incoming traffic from vari-
ous slices. It can also equip network operators to meet the
evolving demands of the dynamic 5G landscape. represent-
ing a forward-thinking solution that harmonizes deployment
challenges, operational efficiency, and the delivery of high
Quality-of-Service (QoS) across the registration area. Hence,



in this paper, we propose a long short-term memory (LSTM)
based solution to predict network slice traffic demands that
can be utilized for proactive resource management in target
tracking areas considering user mobility. Our solution is able
to predict the traffic demands of individual slices based on
the previously received service requests. This can solve the
issue of mobility management within a registration area by
implementing efficient resource management among available
network slices in order to provide seamless service to the users
within the registration area, regardless of the availability of
specific network slices.

The rest of the manuscript is organized as follows. Section
II summarizes the literature regarding network slice mobility
management, slice handover, and traffic demand prediction.
Section III presents our proposed system model. Section IV
describes the proposed scheme with its implementation and
evaluation. Finally, in section VI, conclusions and future work
are presented.

II. RELATED WORK

The concept of network slicing has become crucial in adapt-
ing network services to meet the diverse demands of modern
communication. However, the deployment of non-uniform
slices and the dynamic nature of mobile networks present a
range of challenges when it comes to maintaining seamless
mobility for these slices. Managing the mobility of network
slices involves intricate issues such as handovers, resource
allocation, and QoS maintenance, which require innovative
solutions to fully capitalize on the advantages of network
slicing. While handovers are essential in mobile networks, they
can also be complex in terms of QoS, resource consumption,
and overall network performance.

The authors in [1] examine the challenges in network
slicing mobility management, providing a thorough survey that
not only identifies these problems but also offers insightful
information on mobility trends, user grouping, and slice mo-
bility triggers. Their research focuses on numerous aspects
of slice mobility, such as optimal patterns, the Follow Me
Edge idea, service migration in Infrastructure as a Service
(IaaS) clouds, key triggers, and UE grouping approaches.
Furthermore, the study provides a preliminary evaluation of
enabling technologies such as system virtualization and SDN
for resource allocation in network slices, providing a full field
overview. This study greatly advances the conversation of
improving network slice mobility in next-generation mobile
systems.

Conventional handover methods, such as relying on RSRP,
are insufficient for meeting the varied service requirements
of network slicing. In [6], researchers explore the challenges
of mobility management in network slicing and highlight
the complexities of handovers. They propose an innovative
solution that utilizes artificial intelligence, specifically re-
inforcement learning, to create an intelligent handover al-
gorithm tailored for Radio Access Network (RAN) slicing
environments. The Multi-Agent Learning based Smart Han-
dover Scheme (LESS) aims to reduce long-term handover

costs while maintaining QoS. LESS is comprised of two
components: LESS-DL, which selects both target base stations
and network slices during handovers, and LESS-QVU, which
updates Q-values through data sharing to overcome limited
data availability. The suggested LESS framework has shown
significant enhancements in network handover cost, handover
frequency, and outage probability compared to other state-of-
the-art approaches. Authors in [7] have also ventured into
the dynamic deployment of network slices by introducing
a prediction-assisted adaptive network slice expansion algo-
rithm. This innovative approach comprises three core elements.
Firstly, they utilize the Holt-Winters prediction algorithm to
forecast network slice traffic demand, with a primary focus on
minimizing disruptive changes to network topology. Secondly,
their methodology incorporates a virtual network function
(VNF) adaptive scaling strategy, precisely determining the
appropriate number of VNFs and resources to prevent resource
wastage. Lastly, they present a proactive online deployment
algorithm that dynamically deploys network slices, ensuring
adherence to delay requirements while considering critical
factors such as resource capacity, delay constraints, network
costs, and energy consumption.

The authors present a handover prediction and manage-
ment technique tailored for 5G cellular networks [8]. Their
approach centers on leveraging a deep learning neural network
(DLNN), with a specific focus on User Equipment (UE)
mobility and continuous monitoring of RF signal conditions.
LSTM plays a pivotal role in their research, aiding in the
tracking of UE movements. Similarly, several other works
[9], [10], have delved into LSTM applications, particularly for
short-term traffic predictions. Here, the deep learning LSTM
model adeptly grasps long-term data dependencies and non-
linear traffic patterns, aiding in making informed decisions,
especially during peak traffic periods. It’s worth noting that
while LSTM has shown promise in handover management,
its implementation has been primarily within conventional,
non-sliced networks. However, there’s a compelling prospect
for extending LSTM-based solutions to predict network slice
traffic demands, an area we will explore in our research.

III. SYSTEM MODEL

We consider a registration area represented by R. There are
a N number of tracking areas within a registration area R,
represented by the set T = {T1, T2, ..., TN}. Each tracking
area has M number of base stations represented by B =
{B1, B2, ..., BM}. There are a total K number of network
slices corresponding to different services within a registra-
tion area R. The available network slices are represented as
S = {S1, S2, ..., SK}. These network slices are randomly
distributed throughout the registration area.

Each Vehicular User Equipment (VUE) is associated with a
specific slice SK ∈ S requesting a service. The VUEs request
the base station within a tracking area for its services while
relying on the Cellular Vehicle-to-Everything (C-V2X) mode 4
semi-persistent scheduling (SPS) mechanism [11]. Whenever
the VUE generates a request it arrives at the transport layer
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Fig. 1. Network Slice Prediction for Seamless Service.

to be sent, the VUE stores the generated packet at the buffer
and first reserves the resources from the pool to transmit the
generated packet. The VUE reserves the resources from the
dedicated slice assigned for the specific application. Each slice
is composed of a two-dimensional frequency and time grid
called the resource pool. In the time domain, the sub-resource
pools/slices are divided into subframes, and in the frequency
domain, they are divided into subchannels. Each subframe is
divided into slots of 1msec. The total bandwidth is distributed
between the slices based on the given requirements.

We have used the deepslice dataset for the purpose of
prediction in our model [12]. A total of 3 months of data
belonging to five different network slices is considered. The
data includes traffic data of smart transportation, traffic safety,
industry 4.0, AR/VR/gaming, and smartphone traffic. The
proposed algorithm is trained using the given dataset and
prediction of slice demand is carried out. The proposed system
model is represented in Fig. 1.

IV. SLICE DEMAND PREDICTION BASED SOLUTION

A significant challenge in the realm of 5G network slicing
lies in the deployment of slices that are not evenly distributed
across the network. Up until Rel-17, the 3GPP operated under
the assumption of uniform service support across all tracking
areas within a registration area. However, this assumption does
not align with practical deployment scenarios. Recognizing
this, 3GPP is currently addressing the issue of non-uniform
slice deployment as part of its Rel-18 efforts. The non-
uniform distribution of slices can result in several unfavor-
able outcomes, such as service disruptions when transitioning
across slice service area boundaries and inconsistent service
quality throughout the registration area. Tackling the challenge
of non-uniform slice deployment is essential, but the cost
associated with uniformly deploying new slices across the
entire registration area can be prohibitive. Therefore, it is
crucial to explore cost-effective alternatives.

Efficient slice handover mechanisms emerge as promising
solutions to address this challenge. Efficiently carrying out
inter and intra-slice handover can play a significant role in
solving the challenge of seamless service provision in the
registration area due to the non-homogeneous deployment of
network slices. These mechanisms can dynamically allocate
network resources, negating the need for extensive uniform
slice deployment. This adaptive approach can further optimize
resource utilization and minimize service interruptions as users
and devices move across different tracking areas within a
registration area. However, to effectively implement such an
approach, it becomes highly advantageous to anticipate slice
demand. Such proactive resource management can allow for
the seamless provision of services to users within a registra-
tion area. In light of this, we present a solution based on
Recurrent Neural Networks (RNNs) to forecast the demand
of existing network slices. Our proposed approach harnesses
LSTM networks to make predictions regarding slice demands.
These predictive insights into network slice data enable us
to dynamically allocate resources among the available slices.
This resource adjustment accommodates incoming traffic from
neighboring tracking areas, effectively addressing the mobility
management challenge within the context of network slicing.
For instance, when a new user seeks access to a specific
service not currently accessible in their target tracking area
(the tracking area the user is moving towards), the allocated
resources in that area can be preemptively reconfigured. This
proactive resource reallocation is guided by the predictions
generated by our LSTM-based model, allowing us to provide
the requested service to the incoming user. Our proposed
scheme not only assists in solving the challenges of mobility
management and non-homogeneous deployment of network
slices within a registration area but also injects a layer of
intelligence into network operations, aligning them with the
5G-Advanced criteria set forth by 3GPP.

TABLE I
LSTM NEURAL NETWORK PARAMETERS

Parameter Value
Hidden Layers 2
No. of Neurons in each layer 64
Learning Rate 0.001
Batch size 256
Dropout 20%
Activation Function Sigmoid

V. EVALUATION

In this section, we describe our simulation setup employed
to carry out network slice demand prediction using LSTM.
Furthermore, we present the results of the prediction for
available network slices.

A. Simulation Setup

For the purpose of evaluation, we have used ’deepslice’
dataset [12]. We have performed preprocessing on the dataset
to use it for prediction of slice demands. The dataset includes
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Fig. 2. Prediction of received number of requests for different network slices.

smartphone, traffic safety, industry 4.0, AR/VR/Gaming, and
smart-transportation slices. We have considered three months
of data which includes incoming traffic of VUEs within one
registration area where VUEs request different services from
the available network slices. The simulation setup follows our
system model presented in section III. The dataset is divided
into 85/15 split for training and testing of our LSTM model.
The model is trained for 300 epochs. The parameters of our
LSTM model are presented in Table I.

B. Simulation Results

This section discusses the prediction results obtained using
our LSTM model. Firstly, the individual prediction results of
the available network slices’ traffic demand are discussed.
Then, the average slice traffic demand for each service is
compared. Finally, we analyze the training performance of the
LSTM neural network.

Fig. 2 presents the predictive outcomes pertaining to the
available network slices. Specifically, the forecast spans a 12-
day period, encompassing the user-generated request statis-
tics for each network slice service. The graphical depictions
within Fig. 2(a) through 2(e) are dedicated to the services
of AR/VR/Gaming, Industry 4.0, Traffic Safety, Smartphone,
and Smart Transportation, respectively. Within each subfigure,
a comparative visualization unfolds, showcasing both the
actual and predicted request quantities corresponding to the
respective service. Evidently, the LSTM model demonstrates
a remarkable capacity for precise prediction across all ser-
vices. These meticulously forecasted datasets, tailored to each
service, offer invaluable insights into slice traffic demand.
Subsequently, these insights empower proactive resource al-
location or reallocation among network slices, facilitating the
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Fig. 3. Average slice traffic demand per hour.

seamless accommodation of incoming users originating from
neighboring tracking areas.

A total of five network slices were considered for predict-
ing the number of requests received every hour for a 12-
day temporal span. Using the predicted data, we infer the
average slice demand per hour for each service considering the
fluctuations in the volume of requests received every hour. The
plot in Fig. 3 exhibits the highest demand for AR/VR/Gaming
and Smartphone slice whereas the lowest demand for Traffic
Safety slice considering the number of requests received for
respective slices. This information can be used to proactively
(re)configure the resources among slices in order to provide
seamless service to the incoming traffic in the current tracking
area. Consequently, we can ensure seamless service provision



for the users within a registration area and efficiently tackle
the challenges of mobility management and non-uniform slice
deployment throughout the registration area.
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Fig. 4. Training loss of LSTM model.

Finally, in Fig. 4, we illustrate the training loss curve of our
LSTM neural network model. This graphical representation
serves as an insightful analysis of the model’s convergence,
leveraging the dataset of network slice traffic for various avail-
able services. The discerning observation from this plot is the
progressive reduction in loss values as the number of epochs
increases. Remarkably, these loss values approach near-zero
levels within the initial 100 epochs. This swift convergence
can be attributed to the dataset’s relatively modest size and
simplicity, which enables the model to swiftly reach its optimal
state. Consequently, the model exhibits quick convergence
accompanied by stable training performance.

VI. CONCLUSIONS AND FUTURE WORK

In this manuscript, we have presented a solution addressing
the complexities of mobility management and non-uniform
network slice deployment. Our approach leverages predictive
learning, employing Long Short-Term Memory (LSTM) to
forecast request volumes for various network slices. These
predictions enable us to deduce the demand for each slice,
facilitating proactive resource allocation to accommodate fu-
ture demand shifts. This proactive configuration ensures un-
interrupted service delivery to users transitioning from neigh-
boring tracking areas, thus guaranteeing seamless connectivity
across the entire registration area. Our proposed method can
effectively minimize service disruptions for mobile users while
simultaneously tackling the challenge of non-uniform slice
deployment.

Moving forward, our future endeavors will focus on de-
veloping a robust handover mechanism to address both inter
and intra-slice challenges by utilizing the prediction results.
Additionally, we plan to implement an efficient resource
management scheme tailored to diverse tracking areas within
registration areas.
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