
Generative Artificial Intelligence for Industry:
Opportunities, Challenges, and Impact

Barun Kumar Saha
Grid Automation R&D

Hitachi Energy, Bangalore 560048, India
barun.kumarsaha@hitachienergy.com

Abstract—The recent advances in Generative Artificial In-
telligence (GenAI) and Large Language Models (LLMs) have
generated significant interest across the world. For a successful
adoption of GenAI and LLMs by industry, it is critical to identify
their potential benefits, impact, and challenges. Accordingly, in
this work, we investigate a few use cases of LLMs, which are
relevant across most industry segments. In order to empirically
evaluate the impact of GenAI on the code generation use case, we
build CodePrompt, a handcrafted dataset of sequential prompts
used by a human user to generate code. We approximate
efficiency by considering the ratio of the number of tokens of
code generated by an LLM to the number of tokens in the user’s
prompt. Experimental results reveal that a sequential trial of
prompts for code generation may lead to an efficiency factor
of about 6.33, on average, which means that a user’s effort is
reduced to about one-sixth.

Index Terms—Artificial Intelligence, Generative AI, Large
Language Models, Code Generation, Tokens, Data Pipeline, Bid
Engineering

I. INTRODUCTION

Recently, GenAI and LLMs have received significant at-
tention from researchers, software developers, and users. In
general, GenAI generates content—text, image, audio, video,
or a combination—based on the instructions provided by the
users. In contrast to traditional AI, the scope of GenAI is
significantly vast. For example, traditional language models
are typically focused on a single task, such as intent and entity
identification [1]. Contemporary foundation LLMs, on the
other hand, are trained on volumes of heterogeneous data as
well as instruction-following datasets [2], which enable them
to generate almost any kind of content in response to a user’s
prompt. Consequently, GenAI and the foundation LLMs, such
as Pathways Language Model 2 (PaLM 2) [3], Generative
Pre-trained Transformers 3.5 and 4 [4], and Llama 2 [5], are
expected to find potential use across different domains.

Although contemporary works [6]–[8] discuss the potential
use of GenAI and LLMs in different contexts, there is largely
a lack of investigation into the industry-specific use cases.
Motivated by this, in this work, we discuss a few industrial use
cases where LLMs can play a significant role. The use cases
are illustrated with real examples, allowing the stakeholders
to identify how they work and what changes need to be made.
We also discuss some of the related challenges. The scope of
this work is limited to the use cases involving LLMs.

In addition, we empirically evaluate the “impact” of GenAI
on a particular use case, code generation, by comparing the
average “effort” required by a human user versus GenAI.
Such an impact analysis is usually important in the industrial
context, which enables a business to invest in the technology.
To this end, we build CodePrompt, a handcrafted dataset.
CodePrompt is different from some of the contemporary
GenAI-generated code evaluation datasets, such as HumanEval
[9], LLMSecEval [10], and others [11], in several ways.
First, CodePrompt captures the sequential nature of editing
and refining the initial prompt to obtain a correct output.
Second, CodePrompt contains diverse kinds of coding-related
problems, such as test case generation and debugging. Third,
the complexity of some of the problems in CodePrompt is
fairly high, such as building an application using external
API calls. Fourth, not all the problems in CodePrompt have a
correct output, which reflects the real-life scenario that solving
complex problems may need more effort.

The specific contributions of this work are as follows:

• Identifying the benefits of using LLMs in the industrial
context related to bid engineering, data pipeline, and code
generation use cases. In addition, reviewing some of the
related challenges.

• Building CodePrompt, a handcrafted dataset of
prompts—and solutions—with sequential trials used to
generate code using PaLM 2.

• Measuring the efficiency of effort required to generate
code using GenAI as the ratio of the number of tokens
generated to the number of tokens used in the prompt(s).
In addition, evaluating the CodePrompt dataset using the
aforementioned metric.

The remainder of this work is organized as follows: Sec. II
discusses the different use cases and related challenges. Sec.
III investigates the efficiency of code generation using LLMs.
Finally, Sec. IV concludes this work.

II. INDUSTRIAL USE CASES OF GENERATIVE AI

In this section, we take a detailed look at some of the
use cases where GenAI can find potential applications in the
industry.

Fig. 1: Illustration of technical and non-technical specifications
extraction from an RFP using an LLM. The contents of
the document are converted into embeddings (obtained from
the penultimate layer of a pre-trained deep neural network)
and stored in a vector store. The LLM generates a response
based on the original prompts as well as the relevant contents
retrieved from the vector store.

A. Data Extraction and Conversion

LLMs are trained on large volumes of diverse sets of data.
Consequently, LLMs can help largely in extracting information
and transforming data into desired formats. Here, we discuss
two scenarios where the extractive and transformative features
of GenAI and LLMs can be potentially useful.

1) Bid Engineering: In Intent-based Engineering [12], an
AI-based automated pipeline is envisaged that covers all the
engineering aspects of a project, starting from bidding to
installation and operations. In the bid engineering phase, ven-
dors prepare bids based on customers’ Request for Proposals
(RFPs). RFPs are unstructured documents, can contain up
to hundreds of pages, and contain both technical and non-
technical specifications, among others, for the target projects.
Conventional bid engineering involves users manually going
through such large documents and copying the requirements
in some other place in an organized manner. Co-creation with
GenAI can potentially enable the users to simplify this step.

As an example, let us consider a fictional RFP for com-
missioning a backbone network. Such an RFP may contain
technical specifications related to routers, switches, junction
boxes, and other components. Here, one can use the contents
of the RFP together with an LLM for Retrieval-Augmented
Generation (RAG) [13] of contents. A series of questions
(for example, “What are the different networking-related com-
ponents required for this project?”) may be asked, whose
answers would be retrieved by an LLM based on the provided
document. Subsequent queries may be aimed at retrieving the
other relevant information, such as documents to be submitted.
Figure 1 illustrates such a workflow using LLMs.

In contrast to training an AI model from scratch, a GenAI-
based approach toward bid engineering can save significant
effort and time. However, it may be noted that the contents
of an RFP may largely vary from another. Therefore, a single
sequence of LLM prompts may not work for every RFP. In
this regard, a manual pre-screening of an RFP may provide
an idea about what questions to ask the LMM.

2) Data Pipeline: The Industrial Internet of Things (IIoT)
typically uses a data pipeline to collect data from field devices,

Fig. 2: Illustration of an IoT edge-to-cloud data pipeline, where
an LLM facilitates data conversion and access.

move them to the cloud, store them in a database, and perform
analysis on such stored data. In practice, a real-life data
pipeline contains, apart from the basic data transportation
functionality, several other software modules, for example,
information schema, pipeline health monitoring, and APIs.
Finally, several downstream applications feed on the collected
data, for example, to train an AI model and display statistics
in a dashboard. A key point to observe here is that, across
the data pipeline, the same data elements are often moved to
different places and stored or accessed in different formats.
LLMs can potentially play a key role here in simplifying the
data pipeline architecture.

Figure 2 illustrates a high-level architecture of an IoT data
pipeline, where data from the edge, for example, a substation,
is transported to the cloud. Here, an LLM plays a key role,
providing the universal data conversion and access functional-
ity. The figure also shows an AI agent, which can plan for the
appropriate tasks. In addition, such an agent potentially has
access to different external tools, such as database engines,
which allow it to achieve the tasks.

When new data becomes available via the pipeline, appro-
priate prompts can be set to convert and store data in one
or more desired formats. For example, a downstream data
pipeline health analytics application may need to store the
timestamps and the number of bytes received in a relational
database, which can be queried using the Structured Query
Language (SQL). Recent works indicate that SQL queries can
be generated from text with high accuracy [14], [15]. On the
other hand, a different module to train an AI model may
require that new data points be appended in a flat file.

To illustrate, let us consider Listing 1, where an LLM is
asked to convert JSON data into CSV by retaining only a few
fields. Accordingly, the output data can be generated, as shown
in Listing 2. An agent can save these data in an external file.

Listing 1: LLM prompt and the original JSON data
Given some input JSON data, convert them to CSV format. The

CSV columns should include timestamp, objectId,
variable, and value.

Data:
{

"data": [
{

"timestamp": "2022-06-22T10:17:02.457",
"model": "device",
"objectId": "af9a8f00-55e9-40aa",
"processed": "2022-09-13T13:03:01.806",
"tenantId": "52c21c00-bbb4-4234",
"value": "0",
"variable": "altitude"

},
{

"timestamp": "2022-06-22T10:17:02.467",
"model": "device",
"objectId": "af9a8f00-55e9-40aa",
"processed": "2022-09-13T13:03:02.816",
"tenantId": "52c21c00-bbb4-4234",
"value": "2.2.5",
"variable": "hardwareRevision"

}
}

Listing 2: Transformed data in CSV format
timestamp,objectId,variable,value
2022-06-22T10:17:02.457,af9a8f00-55e9-40aa,altitude,0
2022-06-22T10:17:02.467,af9a8f00-55e9-40aa,hardwareRevision

,2.2.5

A complementary aspect of the above-discussed scenario, as
shown in Figure 2, is the use of LLMs as a data access agent.
For example, if one wants to find all the events reported in
a given time interval from relational and non-relational data
stores, one would need to write two queries with different
syntax, although the semantic purpose of both queries is
equivalent. In contrast, with GenAI, one can prompt an LLM
with the data store name and the query written in natural
language. In response, a suitable query specific to the data
store can be generated and executed to fetch the results.

To summarize, LLMs can potentially play the role of a data
abstraction layer, simplifying how data are transformed, stored,
and accessed. Moreover, the scope of such a layer need not
remain limited to a single project but may be used as a service
across multiple projects within an organization.

B. Coding Companion

Given a problem description, LLMs can generate the rele-
vant code, documentation, and test cases. In addition, LLMs
can also help troubleshoot problems, such as identifying errors
in the code and suggesting appropriate code fixes.

Figure 3 illustrates this idea at a high level, where a user
uses an Integrated Development Environment (IDE) to develop
software. A user can type in instructions (for example, “Write
Python code to. . . ”), which are sent to an LLM via a plugin
installed with the IDE. When the LLM returns the code
response, the plugin, in turn, can insert the code snippet at an
appropriate location in the code editor. An advanced plugin
may also allow users to select a block of existing code from
the editor and send that as a context to the LLM so that the
new code is generated based on the existing code. The IDE-
centric workflow illustrated in the figure may help users to
easily work with diverse and complex scenarios. For example,
in a scenario where the execution of code in the IDE results
in an error, a user can select the concerned error message and
ask the LLM for a solution.

Fig. 3: Code generation in an IDE (or code editor) using an
LLM, potentially facilitated by a plugin.

C. Other Use Cases

GenAI has potential volumes of other use cases suitable
for different industries. GenAI can find significant use in the
sales, marketing, and customer support departments, among
others. For example, sales pitch emails can be customized to
match different personas. On the other hand, a RAG-based
approach combined with an internal knowledge base may help
to respond to common or typical queries raised by customers,
for example, how to fix a certain problem.

In general, industrial adoption of and co-creation with
GenAI offers two significant benefits. On the one hand, cus-
tomers can obtain relatively quick and appropriate resolutions
to their problems, improving customer satisfaction. On the
other hand, with common and repetitive tasks handled by
GenAI, employees can focus on more important activities,
potentially improving the services offered by an organization.

D. Challenges of Using Generative AI

Before concluding this section, we take a look at some of
the challenges related to LLMs and GenAI.

1) Output Verification: LLMs can sometimes suffer from
the hallucination effect, where the seemingly good output may
be incorrect. Therefore, content generated by AI should be
properly checked for correctness and other related aspects. For
example, source code generated by AI, similar to user-written
code, should be subjected to static and runtime verification.
Moreover, when LLMs are used to generate database queries,
it should be verified that the generated queries, especially if
they are complex, perform the desired task. In addition, in the
case of content retrieval using LLMs, the precision and recall
may also need to be assessed. For example, when an LLM
is used in bid engineering, it is expected to retrieve all the
specifications relevant to the target category. Failing to retrieve
any requirement in such a scenario may have a negative effect
on the bid prepared based on LLM-extracted information.

2) Prompt and Response Testing: A prompt submitted to an
LLM usually contains the problem description, a context, and
the output from the previous interaction. In general, different
LLMs perform differently in terms of content generation.
Moreover, given a specific LLM, the performance may also
vary among its different versions or sizes of the models. In
essence, one might think of an LLM as a stochastic algorithm.
Therefore, the output that an LLM produces may vary based on
the input (i.e., prompt) as well as other hyperparameters, such

as the temperature of the model. In other words, as illustrated
in the previous section, prompt engineering—crafting a suit-
able set of instructions—is an important aspect, often requiring
some experimentation. Therefore, as LLM-based applications
continue to grow, in the future, a significant effort may be
directed toward prompt engineering and writing test cases to
verify the behavior of such applications.

3) Operational Cost and Limits: Open Source LLMs can
be potentially run on the cloud or on-premises. Proprietary
LLMs, on the other hand, are only available via the respective
service providers. However, in both scenarios, a significant
computing infrastructure, and therefore, a huge investment, is
required. In addition to the cost, LLMs often have upper limits
on the number of tokens that can be used in input and output.
Consequently, text from large documents, such as RFPs, may
not be provided to an LLM in a single attempt but may need
some buffering. As noted earlier, missing any information from
any RFP is unacceptable in bid engineering. In addition, the
APIs have certain usage limits, for example, 100 calls may
be made per minute at most. Therefore, LLMs-based software
also needs to take such constraints into account.

III. IMPACT OF GENERATIVE AI

In this section, we consider a specific use case of GenAI—
code generation—and empirically evaluate its impact. Our
objective is to roughly estimate how much effort can be saved
when developers use GenAI to develop software.

A. Efficiency Measurement Based on Tokens Count

Let P be a set of programming-related problems (equiva-
lently, questions, instructions, or prompts). When a prompt
Pi ∈ P is submitted to an LLM, a response text Ci is
generated.

In an ideal scenario, Ci represents an accurate and complete
solution that a user “intends” to have in response to a prompt
Pi. However, in practice, crafting a prompt for LLMs may
require some experimentation. In other words, users may need
to make minor or major changes in the prompts to obtain the
desired output. Accordingly, for any prompt Pi ∈ P , let P j

i

be the jth trial (equivalently, attempt or refinement) for the
prompt i, where 1 ≤ j ≤ τmax is an integer and τmax denotes
the maximum number of prompt alterations that the user can
attempt. Moreover, let τi be the number of trials made for any
prompt Pi.

We are interested in empirically estimating how much im-
pact can generative AI have in the context of code generation.
Here, an empirical measure of the “impact” can be obtained by
considering the average number of tokens a user is saved from
typing. We consider tokens as a unit rather than the source
lines of code or other alternatives primarily due to two reasons.
First, since different programming languages have different
syntax, the average length of a line of code, and therefore,
the effort required to type that in, would vary. Second, since
the input prompts consist of a mix of both code and natural
language text, tokens offer a uniform approach for normalizing
the size of input and output.

Let T be a tokenizer so that, for any input text x, T (x)
represents a list of tokens obtained from x and |T (x)| denotes
the number of tokens. Then, the effort gained (or saved) in
terms of the number of tokens for any given prompt P j

i and
its code response Cj

i is measured as:

ηji =
|T (Cj

i)|
|T (P j

i)|
. (1)

Accordingly, the average token efficiency of a code prompts
dataset (including the original prompts and their j trials)
becomes:

η =
1

n

∑
i

∑
j

ηji , (2)

where n =
∑|P |

k=1 τk.
The baseline efficiency measures in (1) and (2) can be

improved by considering the “effective” prompt inputs and
their sequential statefulness. To understand this, let us recall
that any prompt may contain both natural language text and
code. It is expected that the text in the prompts is written by
the users themselves. However, the code snippet may already
exist so that a user merely copies that code in the prompt rather
than manually writing it in the prompt. Such code may be
previously generated using AI. Alternatively, such code may
have been previously written by a user, but not for the purpose
of using it with a code prompt. In addition, error messages—
from run-time or compile-time errors—may also be copied in
a prompt. In other words, the “effective” volume of text (or
tokens) written by a user in a prompt may be less than the
length of the prompt’s text. Accordingly, let P̃ j

i be the effective
prompt so that |P̃ j

i | ≤ |P j
i |. Then, (2) can be refined as:

η̃ =
1

n

∑
i,j

˜
ηji =

1

n

∑
i,j

|T (Cj
i)|

|T (P̃ j
i)|

. (3)

It may be noted that, given a prompt and its j trials
(or sequential refinements), P 1

i , P
2
i , · · · , P

j
i , any prompt in

the sequence is typically obtained by adding, removing, or
substituting texts (tokens) in the previous prompt. For any two
sequences of tokens x and y, let δ(x, y) be the edit distance
between x and y. In other words, one requires δ(x, y) editing
operations to produce y from x. Accordingly, the tokens count
of an effective prompt P̃i with τi trials, ∀i, considering its
possible sequential attempts, is measured as:

κ(P̃i) =

{
|P̃i|, if τi = 1

|P̃ 1
i |+

∑τmax

k=2 δ(P̃ k−1
i , P̃ k

i), 2 ≤ τi ≤ τmax

(4)
The average efficiency, considering the sequential depen-

dence of the effective prompts and the final version of the
code produced in the sequence of trials, is expressed as:

η∗ =
1

|P |
∑
i

|T (Cτi
i)|

κ(P̃i)
. (5)

In other words, η∗ in (5) indicates the multiplicative scale
with which generative AI generates code-related tokens, on
average, for every single token written by a user. Therefore,
code generation using GenAI is useful only when η∗ > 1.

TABLE I: Summary of the CodePrompt dataset. The “Correct” field indicates whether or not the correct output was generated.

ID Type Max. Trials Correct ID Type Max. Trials Correct ID Type Max. Trials Correct
1 write 3 no 11 complete 3 no 21 write 1
2 write 1 12 complete 1 22 write 2
3 write 3 no 13 complete 1 23 write 1
4 complete 1 14 fix 3 24 write 1
5 complete 1 15 question 1 25 complete 3 no
6 complete 1 16 question 1 26 write 1
7 write 3 no 17 fix 3 27 write 3
8 complete 3 18 question 1 28 write 1
9 fix 2 19 fix 1 29 write 1

10 write 1 20 write 3 no 30 write 3 no

B. Dataset and Performance Evaluation

We built CodePrompt1, a handcrafted dataset, in order to
empirically evaluate the impact or usefulness of GenAI for
code generation. CodePrompt consists of 30 (i.e., |P | = 30)
programming, AI, and software development-related problems
as well as their solutions generated using PaLM 2. Each
problem consists of three prompts at most (i.e., τmax = 3),
representing the scenario where a user makes a maximum of
three attempts to have a solution generated by AI. Collectively,
there are 54 prompts, and therefore, 54 code responses. The
problems or prompts in the dataset primarily relate to three
different categories—write code from scratch based on natural
language instructions, complete a partially provided code
snippet, and fix problems in the code. As shown in Table
I, about half of the problems from the CodePrompt dataset
required more than one attempt to solve.

CodePrompt used the code-bison-32k model of PaLM 2
to generate solutions. The temperature was set to 0.01. A
maximum of 4096 tokens were allowed in the output. PaLM
2 was used in a stateless (i.e., non-chat) mode, so the output
of the prior interactions did not affect the current output.

We manually executed the code response for each prompt
to verify its correctness. Since our objective was to generate
a fragment of code, and not an entire software project, we as-
sumed that all necessary modules, files, and libraries required
to run such code were already available. Accordingly, we also
ignored trivial omissions and variations in the code response,
such as not importing a library. The prompts failed to achieve
correct solutions for 7 out of the 30 problems. In other words,
the CodePrompt dataset achieved about 76.66% correct results
using PaLM 2. On the other hand, each problem, on average,
used 1.80 prompts.

All prompts and code responses were saved to different files.
Subsequently, we used Tiktoken2, an Open Source tokenizer
based on Byte Pair Encoding, to tokenize texts from the
prompts and code, based on which we computed the token
counts and the efficiency measures.

C. Results

Figure 4 shows the distribution of token count for all
the prompts, the corresponding effective prompts, and the
resulting code responses generated by PaLM 2. In general,

1https://github.com/barun-saha/CodePrompt
2https://github.com/openai/tiktoken

 0

 2

 4

 6

 8

 10

 12

 14

Prompt
Effective prompt

Code

T
o

k
en

s
co

u
n

t
(×

 1
0
0

)

Prompt index

Fig. 4: Tokens count distribution for the prompts, effective
prompts, and the resulting code.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Code vs. prompt
Code vs.

effective prompt

R
at

io
 o

f
to

k
en

s
co

u
n

t

Prompt index

Fig. 5: Code generation efficiency for the prompts and the
corresponding effective prompts.

the code generated in response to the prompts contains more
tokens. This is evident from the efficiency graphs in Figure 5,
where the ratio of tokens count in the code versus the prompts
and the effective prompts are shown. Moreover, since the
effective prompts usually contain less number of tokens than
the original prompts, the latter ratio is higher. In particular, we
found the average efficiency, as measured by (1) and (3), to
be 2.61 and 4.99, respectively. In other words, for every token
in the input prompt, 2.61 times more tokens, on average, are
produced in the code. On the other hand, for every token in
the effective prompt, 4.99 times more tokens are generated in
the code, on average.

Figure 6 shows the distribution of token counts by con-
sidering the sequential prompts for the coding problems, as
discussed in (4). The corresponding efficiency measure is
shown in Figure 7. The boxes with relatively darker shades
indicate the problems for which correct code output was
obtained. The boxes with relatively lighter shade indicate the
problems for which no correct output code was obtained in

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

Effective prompt

Code

T
o

k
en

s
co

u
n

t
(×

 1
0

0
)

Problem index

Fig. 6: Tokens count distribution for the problems considering
the sequential prompts, effective prompts, and the final version
of the code generated.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

Correct output

Incorrect output

R
at

io
 o

f
to

k
en

s
co

u
n

t

Problem index

Fig. 7: The efficiency measure, by considering the sequential
effective prompts for all the problems from the dataset.

τmax = 3 trials.
In particular, the average efficiency in this case, as measured

by (5) was found to be 6.33. In other words, when a user
attempts to generate code by providing some instructions and
making at most two revisions of the original instructions, the
code generated contains 6.33 times more tokens than the input.
This indicates that a user, on average, has to spend less effort
(and time) in generating code using AI. This, in turn, largely
points toward increased efficiency and productivity.

Figure 7 also shows that the efficiency for certain types of
code generation problems is higher than the others. For exam-
ple, Problem 12 asked to generate test cases for a given module
of code. Consequently, the effective prompt had a much lower
size—there was only one line of text instruction, whereas there
were more than 120 lines of code based on which the test cases
were to be generated. In contrast, the generated code response
had about 100 lines of code. Therefore, the ratio of the tokens
count of the response versus the effective prompt was very
high. On the other hand, Problem 20 failed to generate code.
Consequently, the efficiency was close to zero.

Before closing this section, it may be noted that (1) through
(5) do not account for several other factors, such as a user’s
lack of familiarity with a given technology and the complexity
of the code to be written. In general, when users write code,
they often need to go through documentation to find the ap-
propriate libraries or API calls, which require additional effort
and time. With generative AI, this effort can be reduced, too.
Therefore, in practice, the efficiency gained—or the impact
that generative AI has on code generation—is expected to

be relatively greater than what is reported by the preceding
performance evaluation results.

IV. CONCLUSION

In this work, we investigated how LLMs can be useful in the
industrial context by considering different use cases. We also
empirically evaluated the impact of GenAI on code generation
by developing the CodePrompt dataset and comparing the sizes
of user inputs and AI-generated output. Experimental results
revealed that code generation with LLMs can reduce human
effort to one-sixth, on average, which indicates that co-creation
with GenAI is useful. Finally, we also discussed some of the
challenges that GenAI offers.

In the future, this work can be extended in different ways.
The CodePrompt dataset can be expanded to include further
diversity. Moreover, other industry-relevant use cases can also
be investigated.

REFERENCES

[1] B. K. Saha, L. Haab, and L. Podleski, “Intent-based Industrial Network
Management Using Natural Language Instructions,” in IEEE CONECCT
2022, Jul. 2022, pp. 1–6.

[2] L. Ouyang et al., “Training language models to follow instructions
with human feedback,” in Advances in Neural Information Processing
Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, Eds., vol. 35. Curran Associates, Inc., 2022, pp. 27 730–27 744.

[3] R. Anil et al., “PaLM 2 Technical Report,” ArXiv, vol. abs/2305.10403,
2023. [Online]. Available: https://arxiv.org/abs/2305.10403

[4] OpenAI, “GPT-4 Technical Report,” 2023, [Online] Last accessed: Sep.
14, 2023.

[5] H. Touvron et al., “Llama 2: Open Foundation and Fine-Tuned Chat
Models,” 2023, [Online] Last accessed: Sep. 14, 2023.

[6] V. Bilgram and F. Laarmann, “Accelerating Innovation With Generative
AI: AI-Augmented Digital Prototyping and Innovation Methods,” IEEE
Engineering Management Review, vol. 51, no. 2, pp. 18–25, 2023.

[7] I. L. Alberts et al., “Large language models (LLM) and ChatGPT: what
will the impact on nuclear medicine be?” European Journal of Nuclear
Medicine and Molecular Imaging, no. 50, pp. 1549–1552, 2023.

[8] D. Vaz, D. R. Matos, M. L. Pardal, and M. Correia, “Automatic
Generation of Distributed Algorithms with Generative AI,” in 2023 53rd
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks - Supplemental Volume (DSN-S), 2023, pp. 127–131.

[9] M. Chen et al., “Evaluating Large Language Models Trained
on Code,” CoRR, vol. abs/2107.03374, 2021. [Online]. Available:
https://arxiv.org/abs/2107.03374

[10] C. Tony, M. Mutas, N. Ferreyra, and R. Scandariato, “LLMSecEval:
A Dataset of Natural Language Prompts for Security Evaluations,” in
2023 IEEE/ACM 20th International Conference on Mining Software
Repositories (MSR), May 2023, pp. 588–592.

[11] H. Koziolek, S. Gruener, and V. Ashiwal, “ChatGPT for PLC/DCS
Control Logic Generation,” in 2022 IEEE 27th International Conference
on Emerging Technologies and Factory Automation (ETFA), 2023.

[12] B. K. Saha, L. Haab, and D. Tandur, “A Natural Language Under-
standing Approach Toward Extraction of Specifications from Request
for Proposals,” in Proceedings of 2023 International Conference on
Artificial Intelligence in Information and Communication (ICAIIC),
2023, pp. 205–210.

[13] P. Lewis et al., “Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks,” in Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
Eds., vol. 33. Curran Associates, Inc., 2020, pp. 9459–9474.

[14] B. K. Saha, P. Gordon, and T. Gillbrand, “NLINQ: A natural language in-
terface for querying networkperformance,” Applied Intelligence, vol. 53,
pp. 28 848–28 864, Dec. 2023, DOI: https://doi.org/10.1007/s10489-023-
05043-z.

[15] C. J. Borjal et al., “Parallel Corpus Curation for Filipino Text-to-
SQL Semantic Parsing,” in 2023 International Conference on Artificial
Intelligence in Information and Communication (ICAIIC), 2023, pp.
163–169.

