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Abstract—134 million gallons of oil were spilled into the Gulf
of Mexico after the explosion of an offshore oil rig in 2010.
Known as the Deepwater Horizon spill, this event crippled
marine environments spanning thousands of miles and killed
countless sea creatures already deemed at risk of extinction.
Over 10 years and billions of dollars later, efforts to clean
up this spill continue. Rapid mitigation is necessary to prevent
future incidents from spiraling out of control. After an oil
spill, various organizations must decide how to remediate it.
To do so, there are close to a dozen methods employed today.
Each approach has its pros and cons and must be carefully
selected based on spill conditions. Some techniques (such as in-
situ burning of the oil slick off the water) are highly effective but
have environmentally degrading effects. Choosing a suboptimal
remediation tactic can lead to billions of wasted dollars, and more
importantly, leftover oil that continues to harm the environment.
During this study, an artificial intelligence (AI) based system
using a convolutional neural network (CNN) has been developed
to prescribe the most effective oil spill countermeasure. Findings
were used to develop a mobile application to further expedite
oil spill cleanup and recovery in real time. After being tested
at various configurations, the machine learning model achieved
a maximum average accuracy of 93.1% after 16.19 seconds of
training time with 10 epochs and a batch-size of 16. This work
significantly enhances our ability to quickly remediate oil spills,
protecting the environment from this disastrous calamity.

Index Terms—Oil Spill Remediation (OSR), Artificial Intelli-
gence (AI), Machine Learning (ML), Deep Learning, Convolu-
tional Neural Network (CNN), Generative Adversarial Network
(GAN), Oil booms, In-situ burning, dispersants, bioremediation,
sorbents.

I. INTRODUCTION

During an oil spill on US waters, the United States
Coast Guard, Environmental Protection Agency (EPA), Na-
tional Oceanic and Atmospheric Administration (NOAA), and
Wildlife Services (among various other organizations) are
often involved in the cleanup effort. These organizations must
decide how to best remediate the spill. Today, various oil
spill countermeasures ranging from skimmers to heat pressure
washing are utilized for this task. The five common oil spill
countermeasures of oil booms, in-situ burning, dispersants,
bioremediation, and sorbents were considered during this
study (Table I). These specific remediation techniques were
selected for the study as they represent a diverse range of oil
spill responses that vary in approach, materials, cost, effects,
and pros/cons. For example, the implementation of oil booms,
while cost-effective, is only effective over a relatively small

TABLE I
SUMMARY OF FIVE COMMON OIL SPILL COUNTERMEASURE TECHNIQUES

THAT WERE CONSIDERED DURING THIS STUDY.

Countermeasure Description
Oil booms Floating barrier around spill zone

In-situ burning Burning slick directly off surface
Dispersants Chemicals that expedite oil decay

Bioremediation Oil break-down with microorganisms
Sorbents Collecting spill with absorbant material

spill radius. Meanwhile, in-situ burning can clear larger spills
but is only functional over a specific thickness of oil slick,
not to mention highly environmentally degrading. Dispersants
and bioremediation are not as polluting to the atmosphere
but risk damaging ocean ecosystems such as coral reefs near
the spill site. These latter approaches fail to recover much of
the oil that is spilt—sorbents address this issue but are only
operable over small spills like their oil boom counterparts. In
addition, the success of these oil spill countermeasures relies
heavily on the surrounding conditions at the oil spill site. For
example, in-situ burning and sorbents cannot be feasible when
large concentrations of debris are present at the spill location.
Bioremediation and oil booms would not be preferred during
rough sea conditions that contribute to a faster rate of oil spill
spread. My objective was to create a convolutional neural
network (CNN) to recommend an oil spill countermeasure
given the ambient conditions at the spill. Below are the
ambient conditions I trained my machine learning model to
recognize. Considering these factors, the following ambient
conditions at the spill site were taken into account during this
study: wind speed, wave height, wave swell, presence of
debris, amount of oil spilt, slick thickness, range of oil spill
(Table II). Most work in this domain targets oil spill prevention
and detection. This study tackles the issue from the other
side by presenting a novel oil spill response and remediation
algorithm via a convolutional neural network (CNN) model
developed by the researcher in case prevention fails.

II. OBJECTIVES

During this research, a convolutional neural network (CNN)
was developed and trained to evaluate parameters describing
the ambient conditions of the oil spill (Table II) and determine



TABLE II
AMBIENT OIL SPILL CONDITIONS EVALUATED TO DETERMINE OPTIMAL

OIL SPILL COUNTERMEASURE.

Ambient Condition Scale
Wind Speed Beaufort Scale (0-12)
Wave Height Douglass Scale (0-9)
Wave Swell Douglass Scale (0-9)

Presence of Debris True/False (0 or 1)
Amount of Oil Spilt Value in Gallons (gals)

Slick Thickness Value in Millimeters (mm)
Range of Oil Spill Value in Kilometers (km)

an optimal oil spill countermeasure (Table I) based on those
factors. Through experimentation, the model’s batch size and
epoch count parameters are adjusted to determine the optimal
configuration that trains the fastest and yields the highest
percentage of accurate predictions in a series of test cases not
used during training. After all, this project seeks to develop
an oil spill response paradigm based on deep learning that is
both rapid and effective. These findings are then integrated
into a mobile application that can be used at the spill site
to provide rapid and accurate countermeasure suggestions, all
while allowing the model to continue learning based on user
interaction and feedback.

III. MATERIALS AND METHODS

Extensive research was conducted regarding when each of
the 5 oil spill countermeasures examined in the study (Table
I) are intended to be used and their relationship to the ambient
conditions considered (Table II) including historical outcomes.

The following procedure was followed for the research and
product development:

1) Synthesize a series of oil spills (amount spilt, slick thick-
ness, range) and associated ambient conditions (wind
speed, wave height, wave swell, debris) along with the
most appropriate remediation technique based on my
research.

2) Program a Generative Adversarial Network (GAN) to
simulate thousands of such oil spills.

3) Construct a convolutional neural network (CNN) with
input parameters as the oil spill conditions and output
as a probability matrix of various countermeasures and
the confidence level associated with each.

4) Use the CNN model to prescribe optimal oil spill
remediation technique on test data not used during the
training phase and measure the accuracy.

5) Vary the batch size and epoch numbers and repeat
steps 3-4 to determine the configuration that maximizes
accuracy while minimizing training time.

6) Create a mobile application that prescribes optimal oil
spill countermeasure based on conditions at the spill site
to further expedite cleanup and recovery.

TABLE III
END BOUNDS OF UNIFORM DISTRIBUTION USED FOR SYNTHESIS OF

SPILLS CORRESPONDING TO OIL BOOM COUNTERMEASURE. REFER TO
TABLE 2 FOR A MORE SPECIFIC DESCRIPTION OF THE PARAMETER

FORMAT.

Ambient Condition Minimum Maximum
Wind Speed 2 4
Wave Height 2 4
Wave Swell 2 4

Presence of Debris 0 1
Amount of Oil Spilt 100 10000

Slick Thickness 0.001 3
Range of Oil Spill 0 0.2

A. Oil Spill Parameter Representation

During this study, an oil spill is represented by a series of
numerical values corresponding to the ambient conditions at
the spill site (Table II) and the specific oil spill countermeasure
used for clean-up (Table I). In this model, the features of
the input to the CNN are the ambient conditions of the
spill and the label (output or prediction of model) is one
of five countermeasures to best remediate the corresponding
spill. Thus, each oil spill is internally represented as seven
features (the number of ambient conditions considered in this
study) and one of five labels (the countermeasure assigned for
remediation).

In regards to oil spill synthesis in the first stage of the
procedure, a Python script was programmed to randomly
simulate 500 distinct oil spills in this manner. Oil spill features
were synthesized using a random uniform distribution between
a pre-determined range and the label (countermeasure for
the spill) for that spill was assigned based on research. The
initial synthesized oil spills in the first step of the proce-
dure were procured such that they were evenly distribution
by countermeasure—that is, each oil spill remediation tactic
(label) appeared an equal number of times (100) in the result
of the initial synthesis step. Refer to example end bounds of
the uniform distributions used to synthesize spills for the oil
boom countermeasure (Table III).

As a note, the presence of debris feature did not follow
the uniform distribution; it was a fixed integer value of 0
or 1 for each spill depending on whether its corresponding
countermeasure was optimized for this ambient condition.
Also, these end bounds were finalized based on research
done on the countermeasures themselves and the conditions
to which they were designed for. However, future study can
formalize and further validate these numerical parameters to
establish a more rigorous baseline—we stopped short of this
in the paper. While these parameters were partially inspired
by historical precedent, we could not solely rely on them
because specific data regarding the ambient conditions of past
oil spills and the countermeasure implemented is rather sparse.
Moreover, some of the remediation techniques considered such
as bioremediation are relatively modern and would not have
been used historically at all. Therefore, after research into the
topic, these parameters were used as the baseline for this study.



Fig. 1. CNN architecture for oil spill remediation model.

B. Generative Adversarial Network (GAN) Description

After an initial synthesis of a small number of evenly
distribution oil spills, a generative adversarial network (GAN)
was trained to synthesize thousands of oil spills based on
the underlying trends observed in the initially simulated set.
Synthetic data was necessary as more training samples were
needed to train the CNN classifier, and the use of a GAN is
widely recognized as a viable means of obtaining this data. In
this study, the Conditional Tabular GAN (CTGAN) proposed
by Xu et al. (2019) was utilized to generate oil spill samples
for CNN training. This CTGAN is designed to generate tabular
data by training on a baseline set provided to the model. The
500 synthetic oil spills from the first step of the procedure were
tabularized and then passed through the CTGAN. The CTGAN
was trained with GPUs in a Google Colab environment and
configured for 30, 000 epochs to synthesize thousands of oil
spills along with their countermeasure.

C. Pre-Processing Algorithm

The GAN-generated data was ultimately used for machine
learning model training and evaluation. Before that, it must
be pre-processed so that meaningful trends are spotted by the
algorithm rather than insignificant variances.

The following pre-processing steps were taken:
• The data for each oil spill was verified to be the same

length (countermeasure label and 7 surrounding condition
features).

• Data was normalized to the range from 0 to 1:
• All negative values were multiplied by −1 to ensure

positive inputs. By virtue of how CTGAN generates
values, some data points were inevitably negative.

• All values were scaled down to fit the range by being
divided by the maximum possible value for that category
of features.

D. Convolutional Neural Network (CNN) Development

A Convolutional Neural Network (CNN) was developed
using the TensorFlow module with the Python programming
language. The Neural Network consists of the following eight
layers: Layer 1 is a 1D Convolutional in which adjoining
weights are utilized to compute the output. Layer 2 reduces the
size of the Layer 1 output by considering the most significant
weight in a “pool” of any two given weights. Layer 3 reduces
data representation into 1 dimension. Layers 4-7 use the

TABLE IV
NUMBER OF TEST CASES FOR EACH OIL SPILL COUNTERMEASURE.

Oil Spill Classification Number of Test Cases
Oil Booms 315

In-situ Burning 289
Dispersants 328

Bioremediation 325
Sorbents 343

Rectified Linear Unit activation function to linearize the data
structure. Layer 8 uses the SoftMax activation function to
generate a probability matrix of size 5. The position in the
matrix with the largest value (or confidence) corresponds with
the final oil spill countermeasure recommendation. Refer to
the architecture diagram (Fig. 1) for a brief summary of model
layers.

IV. RESULTS

The model accuracy was evaluated on a test set that was
not used during the training phase. The dataset distribution of
the test set used for reporting accuracy, confusion matrices,
recall, precision, and F1 scores is displayed in Table IV.

A. Class-wise Prediction Analysis

Confusion matrices were generated for various epoch and
batch size configurations. Furthermore, global precision, re-
call, and F1 scores for each configuration were analyzed.
This provided insight about how these model parameters
affected the predictions of specific classes. These metrics for
a configuration at 4 epochs illustrates an overfitting trend for
the model.

At 4 epochs and 16 batches, global scores for precision,
recall, and F1 are all roughly 0.93. The confusion matrix for
this configuration illustrates a high degree of accuracy as well
as consistency for each type of oil spill being diagnosed. A
majority of test cases are predicted correctly.

However, at 64 batches, the model seems to overfit. The
number of correctly predicted cases declines significantly for
the dispersants and sorbents countermeasures. In the case
of the latter, many more sorbent cases are misdiagnosed as
bioremediation scenarios. At this configuration, global preci-
sion, recall, and F1 are 0.849, 0.831, and 0.826 respectively,
incurring high losses from 16 batches (Fig. 2). In fact, the



Fig. 2. Comparison of class-wise performance using a confusion matrix between 8 and 16 batches for 4 epoch configuration.

values for these metrics steadily decline for the batch counts
tested in between.

The 8 epoch configurations demonstrate a more parabolic
trend in regards to overfitting on batch size. At 8 batches,
global precision is 0.917, global recall is 0.908, and global
F1 is 0.909. The confusion matrix indicates that predictions
are fairly accurate and consistent between classes, albeit an
abnormally high number (65) of misdiagnosed bioremediation
samples into the sorbent category. The model’s performance in
fact improves at a higher batch size of 16, with approximately
2 − 3% gains in all metrics respectively and much fewer
misdiagnosed bioremediation samples. However, interestingly,
in spite of the overall gain, more sorbent samples were mis-
diagnosed as bioremediation samples (Fig. 3). Interestingly,
this configuration achieved the highest global metric values,
and precision, recall, and F1 all declined for subsequent batch
sizes tested.

It was determined that my CNN model’s performance is
most optimized at 8 epochs and 16 batches. This configuration
has high consistency and accuracy in class-wise predictions
as revealed by the confusion matrix. This is corroborated by
high values for the other metrics analyzed. Moreover, model
training occurs in less than 15 seconds (Fig. 4), which is
suitable for the dynamic model prepared in next sections.

B. Overview

My objective was not only to develop and present a machine
learning model but also to determine the optimal configuration
to maximize its accuracy and reduce its training time. After
all, I seek accurate and rapid oil spill response. In my case, I
searched for the perfect batch size and epoch count configu-
ration of my machine learning model to find the combination
that maximized the number of correct oil spill countermeasure
recommendations and did so most quickly on a test dataset
not used during the training phase of the model. The data

Fig. 3. Confusion matrix for configuration that yielded optimal recall,
precision, and F1 performances

generated by the GAN was divided into a training set and
a testing set. The model trained solely on the training set
and was only exposed to the testing set during performance
evaluation.

Figures 4 and 5 illustrate accuracy and training time for
various configurations of my machine learning model. They
show the training time and accuracy at various batch size and
epochs that my machine learning model parameters were set
to. My machine learning model was deemed more accurate
when it correctly provided an oil spill countermeasure for a
higher proportion of test cases (which I designed based on
careful research) not used during the training phase.

These charts illustrate accuracy trends over the duration of



Fig. 4. CNN model accuracy and training times at all batch size and epoch configurations tested.

Fig. 5. Relationship between number of epochs and model accuracy for
various batch size configurations.

three trials for different configurations of the model. Figure 5
depicts model accuracy as a function of number epochs for
all the batch sizes tested. At 8 batches, model experiences
significant performance gain of about 7% between 2 and 4
epochs. Performance remains consistent until 8 epochs, after
which the model overfits and drops in accuracy at 10 epochs.
At 16 32, and 64 batches, model performance increases with
epoch count but shows signs of leveling off beyond 8 and 10
epochs (Fig. 5). This is indicative of over-fitting of the model
due to too much training time.

Furthermore, training time of the model tends to increase
with epoch count and decrease with batch size (Fig. 4). As
epoch count increases for a given batch size, training time

Fig. 6. Mobile application pipeline.

declines; at 10 epochs, training time is reduced by upwards
of 25 seconds between 8 and 64 batches. On the other hand,
training time increases as epoch count rises for a given batch
size. At 64 batches, training time doubles between 2 and 10
epochs of training (Fig. 4).

Based on these results, I found that my model was most
successful at about 8 epochs and 16 batches in terms of
maximizing accuracy and minimizing training time. I used this
finding when building my comprehensive mobile application.

V. PROTOTYPE DESCRIPTION

I created a mobile application with the Android Studio Suite
that can be used at the site of an oil spill to recommend the
most optimal countermeasure. The mobile application has a
Python backend for the machine learning computation and a
Java-based interface for user interaction. Upon opening the
mobile application and bypassing the start screen, the user is



prompted to input information about the ambient conditions
of the oil spill.

After classifying the spill based on these factors, the mobile
application uses my machine learning model (which I designed
based on my experimentation) to prescribe the optimal reme-
diation tactic out of five options. Refer to previous sections
for more information about the machine learning architecture.
After a countermeasure suggestion is offered, the user can
choose to use the result for future remediation efforts. If
selected, the conditions entered by the user and the result will
be added to the train data and used to train future iterations
of the model, contributing to its dynamic nature.

The application “pipeline” summary (Fig. 6) demonstrates
how a user will interact with my app. Anybody can open this
app at the oil spill site and know immediately how to take
accurate action.

VI. CONCLUSION

I programmed a convolutional neural network (CNN) to
predict the most successful oil spill countermeasure given
various conditions at the spill site, with a maximum accuracy
of 93.1% under a given configuration. I compiled my model
at various batch size and epoch configurations to determine
their effect on accuracy and training time. As the number of
epochs increased, accuracy increased, but training time was
lower. Accuracy increased with lower batch sizes, also at the
expense of slower training times. I ultimately created a mobile
application that uses AI to determine the most effective oil spill
remediation technique in real time. My findings helped me
decide which parameters to set in the mobile application model
to allow for fast and accurate predictions, allowing cleanup
efforts to begin immediately and lead to a successful outcome
directly on site of the spill. My mobile application is dynamic
because each time a prediction is requested, users can choose
to store that result to be used for future iterations of the model.
Thus, the machine learning model continues to learn and adapt
based on user interaction. My research and product contributes
to expedited oil spill response by using machine learning,
rescuing endangered ecosystems and fostering a clean future
to come.

VII. CNN MODEL & GAN CODE

The CNN model and GAN data synthesis code de-
veloped and utilized by the researcher in this paper
are at https://github.com/schem05/Machine-Learning-Model-
for-OSR. Please contact the researcher for more information.
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