

A Two-phase Multi-class Botnet Labeling Approach

for Real-world Traffic

Ta-Chun Lo

Department of Electrical Engineering

National Cheng Kung University

Tainan, Taiwan

N28091108@gs.ncku.edu.tw

Chung-Ho Chen

Institute of Computer and

Communication Engineering

National Cheng Kung University

Tainan, Taiwan

chchen@mail.ncku.edu.tw

Shan-Hong Yang

Institute of Computer and

Communication Engineering

National Cheng Kung University

Tainan, Taiwan

Q36101325@gs.ncku.edu.tw

Ce-Kuen Shieh

Department of Electrical Engineering

National Cheng Kung University

Tainan, Taiwan

shieh@ee.ncku.edu.tw

Jyh-Biau Chang

Department of Electronic Engineering

Lunghwa University of Science and

Technology

Taoyuan, Taiwan

andrew@gm.lhu.edu.tw

Abstract—Within the realm of cybersecurity, botnets

represent an increasingly formidable threat, characterized by

diverse types exhibiting distinct behavioral patterns and

characteristics. This study addresses the imperative need for

real-time botnet activity detection by introducing a multi-class

labeling system tailored for real-world network traffic.

Employing clustering algorithms and a semi-supervised

learning framework, this system efficiently labels benign traffic

and performs multi-class labeling for various botnet traffic

categories. Hierarchical Density-based Spatial Clustering of

Applications with Noise (HDBSCAN) is harnessed for clustering

both synthetic and real-world datasets, significantly enhancing

labeling coverage. The remaining traffic is designated as

"unknown" and subjected to identification through a semi-

supervised learning approach. A comparative analysis

underscores the superiority of HDBSCAN over Density-based

Spatial Clustering of Applications with Noise (DBSCAN),

successfully clustering an additional 11% of data. Remarkably,

our system exhibits substantial advancements in data labeling

when juxtaposed with prior research efforts. This research

introduces an effective solution for botnet labeling in the context

of network security, thereby enhancing the capacity for

detecting and mitigating malicious botnet activities.

Keywords—Botnet Classification, Clustering algorithm, Data

labeling, Real-world traffic labeling, Self-learning

I. INTRODUCTION

In the field of cybersecurity, botnets pose an escalating
threat as they house malicious network traffic generated by
compromised hosts, manipulated by hackers or malware.
These botnets serve as platforms for large-scale malicious
operations. Various botnet types exhibit unique behavioral
patterns. Waledac prompts infected hosts to distribute
malicious emails with harmful links or attachments, leading to
further infections. On the other hand, TrickBot operates
discreetly, clandestinely harvesting login credentials during
website access. Given the substantial behavioral diversity
among botnets, it's imperative to categorize and distinguish
them within real-world traffic effectively.

In previous studies, researchers have utilized clustering
algorithms to label real-world traffic. For instance, in [1],
clustering algorithms were employed to label the traffic
associated with attack behaviors. However, the classification
was limited to benign and malicious categories, overlooking
the variations within malicious behaviors and lacking
consideration for multi-class cases. Although some studies
attempted multi-class analysis of real-world network traffic
using clustering algorithms, these methods focused only on

specific types of botnet infections, and the labeled data
accounted for only a small portion of the testing dataset. For
example, in the study by [2], DBSCAN clustering algorithm
was used to perform multi-class analysis of IoT-based botnets
on synthetic datasets and real-world network traffic, but it
achieved accurate labeling for only 10% of the data, with most
of the traffic being labeled as malicious without explicit class
labels. In our team's related research [3], we utilized
DBSCAN clustering on both real-world traffic and synthetic
datasets to label P2P botnet traffic, achieving accurate labeling
for 30% of the botnet traffic. The performance of clustering
algorithms plays a crucial role in determining the amount of
accurately labeled data in multi-class botnet classification. In
previous studies [2, 3], the DBSCAN clustering algorithm
used could result in clusters containing multiple types of
botnet infections, leading the researchers to know that the
traffic within these clusters is malicious but unsure which
category of botnet it belongs to, resulting in labeling them as
malicious without specifying the exact class.

This study aims to provide a multi-class labeling system
for real-work traffic, capable of labeling various type of botnet
traffic as well as benign traffic. We propose a two-phase
botnet labeling system that combines clustering algorithms
and semi-supervised learning, yielding good results for multi-
class labeling in real-world cases. In the first phase, we
employ a more suitable clustering algorithm HDBSCAN to
cluster the synthetic datasets and real-world data, identifying
traffic similar to botnet activity in the real-world traffic and
improving the labeling coverage. The remaining real-world
traffic is labeled as unknown and further identified in the
second phase. In the second phase, we utilize semi-supervised
learning methods to train a multi-class model, reducing the
amount of unknown data.

We compared the performance of two clustering
algorithms, HDBSCAN and DBSCAN, and demonstrated that
HDBSCAN outperforms DBSCAN in clustering by
accurately clustering an additional 11% of the data. Compared
to our team's previous research, our system increases the ratio
of labeled data from 30% to 77% for real-world traffic.

II. BACKGROUND AND RELATED WORKS

A. HDBSCAN & DBSCAN

DBSCAN assumes that the data distribution has the same
density throughout, which is not applicable in real-world
network conditions. Therefore, we need to adjust the
clustering results according to user expectations. Figure 1
simply illustrates the difference between the two algorithms.

DBSCAN clusters instances into a group with predefined
distance value, while HDBSCAN considers the density of data
in their vicinity. If the density is low, it expands the distance
between data, while it has minimal effect when high density.

After careful evaluation, we opted for the HDBSCAN
clustering algorithm to handle our data. HDBSCAN stands out
as a robust clustering algorithm tailored for diverse data
characteristics, encompassing arbitrary shapes, variable sizes
and densities, and noisy datasets. It adeptly detects and
analyzes a spectrum of clustering structures, even those that
are non-convex and non-linear, all while effectively managing
data noise. An open-source performance assessment[27]
comparing HDBSCAN to other widely used clustering
algorithms can be found in the HDBSCAN section of scikit-
learn-contrib[28]. Figure 2 visually illustrates the outcomes of
this comparison, highlighting HDBSCAN's exceptional
performance.

Fig. 1. Data distribution

Fig. 2. Performance of clustering algorithms [28]

B. Self-training

Both DBSCAN and HDBSCAN have instances of real-
world traffic that remain un-clustered. Furthermore, a portion
of real-world traffic lacks a definite classification due to the
presence of multiple synthetic data categories within clusters.
We employ a self-learning approach to augment the amount
of data we can label. Self-training [7] is a semi-supervised
learning approach used to tackle problems with a small
amount of labeled data and a large amount of unlabeled data.
The goal of this method is to train a model using known
labeled data and then use that model to predict and label the
unlabeled data. This can be particularly useful in situations
where obtaining a large amount of accurate labeled data is
difficult or costly. Through augmented, thereby enhancing the
model's performance.

Self-training typically comprises these steps: First, an
initial model is trained with labeled data. This model is then

applied to unlabeled data, predicting their labels and thus
generating predicted labels. These predicted labels are
subsequently incorporated into the labeled dataset, expanding
it. This augmented dataset is used to train an updated model.
This iterative process continues until the desired performance
or label quantity is attained. Self-training's advantage lies in
its capacity to harness the valuable information within
unlabeled data, effectively increasing the labeled dataset's
coverage. This proves especially valuable in scenarios where
obtaining ample, accurate labeled data is challenging or costly.
Self-training enables us to maximize the utility of the existing
limited labeled data, enhancing the model's generalization and
performance.

C. Related works

Numerous studies have concentrated on the detection of
botnets within specific domains, often employing synthetic
datasets for training and testing. While these studies have
achieved favorable results in terms of accuracy and
correctness, the applicability of these achievements to real-
world traffic labeling warrants investigation. Central to this
issue is a pivotal question: whether the scenarios simulated by
synthetic datasets can comprehensively encompass the
intricate and ever-changing network traffic characteristics of
the real world. For instance, within these research endeavors,
we observe certain publications [31-35] opting to employ the
synthetic dataset of CTU-13 as a benchmark for testing.
Although these methods have yielded satisfactory outcomes
on synthetic datasets, it does not imply their seamless
adaptation to the complex diversity of real-world network
traffic. The design of synthetic dataset might not fully capture
the myriad possible scenarios present in the real world, which
often comes with unforeseeable variations and challenges.

Some studies have focused on detecting real-world
network traffic, successfully identifying a portion but leaving
the rest unlabelled as potential threats. For example, Z. Liu et
al. [1] developed a method to predict botnet attacks in real-
world traffic based on Command and Control (C2C) activities.
They used ISP flow data to calculate C2C indicators and
trained a Long Short-Term Memory (LSTM) model,
achieving a 0.767 prediction accuracy for binary classification.
However, this approach did not address the multi-class nature
of modern botnet attacks, which is crucial given their
increasing diversity.

Trajanovski et al. [2] proposed an automated behavior-
based clustering method for Internet of Things (IoT) botnets,
aiming to identify botnets with new functionalities. The
method captures the behavior of IoT botnet samples in a
simulated environment, represents it as behavioral profiles,
and vectorizes them. Then, DBSCAN algorithm is applied to
cluster these vectors, enabling automated clustering analysis.
They constructed a test dataset using IoT botnet samples
propagated from the Internet and evaluated the method. The
results showed that the method can accurately identify IoT
botnets with new functionalities, but it could only identify
10% of the data, while the remaining was classified as
malicious traffic.

In our team's previous research [3], Chen, Wei-Yu et al.
employed BotCluster[4] to perform clustering on both real-
world data and synthetic datasets. Chen transformed the real-
world data into sessions and used BotCluster in conjunction
with the synthetic datasets, after removing certain whitelisted
data. After clustering, if a cluster contained only one category
of synthetic data, we labeled all the real-world data in that

cluster as the corresponding category. For other cases, we
labeled the real-world data as unknown malicious data. We
also introduced a specific category called the "malicious
group" to represent traffic that was considered botnet malware
in previous studies but lacked clear classification.

Fig. 3. [3] labeling method

III. METHODOLOGY

A. Workflow

Figure 4 outlines our Two-phase Data Labeling approach,
which aims to label benign and multi-class botnet traffic. We
recognize that directly applying a model trained on synthetic
data to real-world traffic may lead to misjudgments due to
domain differences. To address this, we cluster real-world and
synthetic data to enable the model to learn real-world traffic
features. This clustering also enhances our labeled dataset for
effective self-training.

Fig. 4. System workflow

Additionally, referring to [3], we improve the
representation of IP address communication by using "Session
Extraction" on both real-world and synthetic datasets,
transforming them into sessions. Our Two-phase Data
Labeling system comprises two phases: Data Clustering for
labeling real-world traffic resembling synthetic data, and Self-
Labeling for enhancing labels on un-clustered real-world
traffic and traffic within clusters.

B. Phase 1 Data Clustering

In the first phase, we use HDBSCAN to cluster the
synthetic dataset and real-world traffic, resulting in five
scenarios. The first combines real-world traffic with multiple
categories of synthetic data, the second contains synthetic data
only, possibly encompassing one or multiple categories. The
third scenario consists solely of real-world traffic, and the
fourth merges real-world traffic with synthetic data of the
same category. The fifth scenario includes un-clustered noise
data. We label real-world traffic within the fourth scenario
using synthetic data categories. In Figure 6, the left side
showcases clustering results, where colored dots represent
various botnet types and white dots denote real-world sessions.
We then label real-world traffic within the fourth scenario, as
depicted on the right side of Figure 6. In the second phase, we

integrate data from the first, third, and fifth scenarios into the
unlabeled dataset, while the remaining data goes into the
labeled dataset. A higher proportion of the fourth scenario
enhances our ability to label genuine network traffic.

Fig. 5. Cluster situation

Fig. 6. Phase 1 labeled example

Figure 7 illustrates the procedural flow of the data
clustering phase. Following the clustering of both real-world
traffic and synthetic data, our initial step entails the
determination of data labeling status. If data has already been
labeled, this designation signifies its synthetic origin;
conversely, unlabeled data is associated with real-world traffic.
In cases involving synthetic data, we incorporate it into the
labeled dataset. When dealing with real-world traffic, our
initial assessment involves verifying whether all synthetic data
instances within a given cluster correspond to the same
category, thereby constituting Case 4. In such instances, we
assign the label of the category as the synthetic data within
that cluster to the real-world traffic. Subsequently, this labeled
real-world traffic is included in the labeled dataset.
Conversely, if synthetic data within a cluster spans multiple
categories or no synthetic data is present, the real-world traffic
remains unlabeled within this phase.

Fig. 7. Phase 1 Data Clustering workflow

C. Phase 2 Self-labeling

Figure 8 provides a detailed depiction of the self-labeling
process. In this phase, we employ the previously labeled

dataset to train a model. Subsequently, we utilize this model
to predict the unlabeled dataset. If the model exhibits
confident predictions for the unlabeled data, indicating a
prediction probability surpassing 90% for a certain category,
it signifies a high level of confidence in the classification. We
include this data in the high-confidence dataset and assign it
the predicted label. Alternatively, if the model's prediction
lacks confidence, we return the data to the unlabeled dataset.

Fig. 8. Phase 2 Self-labeling workflow

After evaluating all the data, we verify whether the high-
confidence dataset is empty. If it contains data, we
amalgamate its contents into the labeled dataset, retrain the
model, and then repeat the steps. If the high-confidence
dataset remains empty, the self-labeling process concludes.
For data that cannot be labeled in either phase, we uniformly
classify them as an unknown category.

In our self-training framework, it is applicable if the output
of the neural network classifier is a probability distribution for
each category. We utilize a fully connected neural network to
process sessions, each comprising 20 features. The model
includes 6 hidden layers with 4096 neurons each. We apply
standard components such as the Relu activation function [12],
He normalization [13], Adam optimizer [14], and employ 3
dropout layers [15] with an initial dropout rate of 0.4

IV. EXPERIMENTS

A. Environment

We finish our experiment in a personal computer. The
CPU is Intel(R) Core (TM) i7-9700 CPU @ 3.00GHz,
memory size is 32 GB, the storage space is 8 TB, and the GPU
is NVIDIA GeForce RTX 2080 SUPER.

B. Dataset

The dataset can divide into two categories, which are the
synthetic dataset, and the real-world traffic dataset.

Synthetic Dataset: Nine distinct botnet types of synthetic
datasets were assembled for this study. The Storm and
Waledac datasets were obtained from the PeerRush [8] dataset,
while the remaining benign and seven botnet types were
sourced from the Malware Capture Facility Project [9],
generously provided by CTU University of Prague in the
Czech Republic. Data collection for these datasets occurred
over the period spanning 2013 to 2018. Additionally, we
leveraged the widely acknowledged CTU-13 dataset, which
encompasses 13 unique scenarios, inclusive of seven botnet
traffic types and benign traffic. Detailed information
regarding these datasets can be found in Table 1 and Table 2.
The relatively balanced dataset from Table 1 served as the

basis for contrasting HDBSCAN and DBSCAN
methodologies, as well as evaluating our approach against the
BotCluster multi-class labeling method. Meanwhile, the
dataset in Table 2 was employed for comparative analysis with
other research contributions.

Real-world Dataset: Table 3 shows the detail of the real-
world NetFlow comes from National Cheng Kung University
(NCKU) on the TWAREN (Taiwan Advanced Research and
Education Network). We used the data from December 2019
as our real-world traffic data.

TABLE I. MCFP & PEERRUSH DATASET

Class From Year Sessions Flows

Benign MCFP 2016-2017 571,278 1,107,246

Storm PeerRush 2013 57,448 113,972

Wisdomeyes MCFP 2016-2017 59,639 122,344

Tinba MCFP 2015-2016 58,393 118,018

Waledac PeerRush 2013 61,370 121,737

Amy MCFP 2016 53,629 126,042

TrickBot MCFP 2017-2018 59,431 119,703

Emotet MCFP 2015-2017 53,828 76,967

Papras MCFP 2017-2018 58,388 116,612

Netsky MCFP 2015-2016 54,984 104,322

TABLE II. CTU-13 DATASET

ID Packets NetFlow Sessions Bot

1 71,971,482 2,824,637 2,049,540 Neris

2 71,851,300 1,808,123 1,437,934 Neris

3 167,730,395 4,710,639 3,921,631 Robt

4 62,089,135 1,121,077 1,098,708 Rbot

5 4,481,167 129,833 109,403 Virut

6 38,764,357 558,920 498,137 Menti

7 7,467,139 114,078 103,258 Sogou

8 155,207,799 2,954,231 2,555,343 Murlo

9 115,415,321 2,753,885 2,447,096 Neris

10 90,389,782 1,309,792 1,078,324 Rbot

11 6,337,202 107,252 102,344 Rbot

12 13,212,268 325,472 319,633 NSIS.ay

13 50,888,256 1,925,150 1,403,292 Virut

TABLE III. REAL-WORLD DATASET

From Year Sessions Flows

NCKU 2019 500,106 1,072,501

C. Experiment 1 Minimum Cluster Size

In the first experiment, we conducted tests on different
minimum cluster size of the HDBSCAN clustering algorithm.
Figure 9 illustrates the result. The x-axis represents the values
of different min cluster size, while the y-axis represents the
ratio of labeled data to the time spent on clustering. Our goal
is to achieve more labeled data while minimizing the time
spent on clustering. Ultimately, we selected the parameter
value of 45 as our HDBSCAN parameter setting.

Fig. 9. Minimum cluster size

D. Experiment 2 HDBSCAN vs DBSCAN

Figure 10 represents our Experiment 2, where we initially
divide the synthetic dataset into three phases: the training
dataset, the Imitate real dataset, and the Validation dataset.
The training dataset contains labeled data that is known to us,
while the Imitate real dataset has the labels removed,
simulating our lack of knowledge about the true labels of those
data. The testing dataset is used to evaluate the usability of the
data labeled by our method.

Fig. 10. HDBSCAN vs DBSCAN

We remove the labels from the Imitate real dataset and
then conduct Two-phase Data Labeling or DBSCAN + Self-
labeling together with the training data to generate Labeled
datasets. Once obtain the Labeled datasets, we compare the
quantities of Imitated real data that these two methods labeled.
Additionally, the Labeled data labeled by both methods will
be utilized to train one neural network model. We will employ
validation data to compare the differences in F1-score among
these models, serving as an indicator to evaluate the usability
of our labeled data.

The experimental results (Table 4 and 5) show that
HDBSCAN + Self-labeling can label 77% of the Imitate real
data, while DBSCAN + Self-labeling can only label 66% of
the data. In terms of performance comparison, the two-phase
method performs better in each metrics.

TABLE IV. AMOUNT OF LABELING DATA

Model Labeled imitate data

Two-phase 77%

DBSCAN + Self-labeling 66%

TABLE V. MODELS COMPARISON

Model Acc Precision Recall F1-score

Two-phase 86% 93% 83% 85%

DBSCAN + Self-labeling 73% 68% 82% 72%

E. Experiment 3 Two-phase vs previous work

Figure 11 illustrates the process of Experiment 3. We
utilized synthetic datasets and real network traffic, applying
both our two-phase data labeling and previous work[3] to label
the real network traffic, thus generating a labeled dataset of
real traffic. Our evaluation focus lies in comparing how much
additional data we can label and the extent of overlap between
this data and the labels assigned by our system.

Figure 12 showcases the respective quantities of real
network data that they can label. The left circle represents the

amount of real network traffic that BotCluster can label, and
the right circle represents the quantity labeled in the first phase
of the two-phase data labeling. Figure 13 displays the amounts
of real network traffic labeled by BotCluster and the complete
two-phase data labeling method. In comparison, our method
increases the labeled data quantity from 30% to 77% and
demonstrates a 25.3% data overlap.

Fig. 11. Two-phase labeling V.S BotCluster multiclass labeling

Fig. 12. Amount of labeled real-world data comparison (Phase 1)

Fig. 13. Amount of labeled real-world data comparison

F. Experiment 4 Comparison with related work

Table 6 provides a comprehensive comparison between
our methodology and prior research endeavors, as delineated
in references [31-35]. To evaluate the efficacy of our approach,
we conducted experiments utilizing the synthetic dataset from
CTU-13, as outlined in Table 2. The dataset was partitioned
into two equal subsets: 50% for training and 50% for testing.
Subsequently, we employed a standardized performance
matrix to gauge disparities among these methodologies. As
discerned in Table 6, our approach exhibits exemplary
performance across a spectrum of metrics.

TABLE VI. CONFUSION MATRIXES COMPARE WITH OTHERS WORK

Method Accuracy Precision Recall F1-score

[31] 0.966 0.833 0.723 0.774

[32] 0.995 0.993 0.994 0.994

[33] 0.979 0.727 0.978 N/A

[34] 0.979 0.727 1.0 0.83

[35] 0.962 N/A 0.946 N/A

Two-phase 0.999 0.998 0.989 0.994

V. CONCLUSION

Different types of botnets exhibit distinct behavior
patterns and characteristics. To achieve real-time detection, it

is necessary to categorize these botnets into subgroups and
label the malicious and benign traffic within the real-world
traffic. We propose a multi-class two-phase botnet labeling
system which combines clustering algorithms and semi-
supervised learning for real-world traffic that can label real-
world botnets traffic, as well as benign traffic. In the first
phase, we utilize HDBSCAN to cluster synthetic datasets and
real-world data, thereby labeling traffic like botnet behavior
and improving labeling coverage. The remaining real-world
traffic is labeled as unknown and subjected to identification in
the second phase. In this phase, we employ semi-supervised
learning techniques to build a multi-class model and reduce
the amount of unknown data.

After comparing the effectiveness of HDBSCAN and
DBSCAN, we demonstrated that HDBSCAN performs better
in clustering botnet traffic, achieving 11% higher accuracy in
clustering data. Furthermore, our system shows significant
improvement in data labeling compared with previous work.
This research provides an effective solution for labeling botnet
in the field of network security, aiding in the detection and
prevention of malicious activities in botnets.

REFERENCES

[1] Z. Liu, X. Yun, Y. Zhang and Y. Wang, "CCGA: Clustering and
Capturing Group Activities for DGA-Based Botnets Detection," 2019
18th IEEE International Conference On Trust, Security And Privacy In
Computing And Communications/13th IEEE International Conference
On Big Data Science And Engineering (TrustCom/BigDataSE),
Rotorua, New Zealand, 2019, pp. 136-143, doi:
10.1109/TrustCom/BigDataSE.2019.00027.

[2] Trajanovski, T.; Zhang, N. An Automated Behaviour-Based Clustering
of IoT Botnets. Future Internet 2022, 14, 6.
https://doi.org/10.3390/fi14010006

[3] Chen, Wei-Yu; Shieh, Ce-Kuen; Chang, Jyh-Biau. A Multi-type
Botnet Classifier for Real Traffic Based on BotCluster.
https://thesis.lib.ncku.edu.tw/thesis/detail/2328c0d4868bda0532cb46
df1530941b/

[4] C.-Y. Wang, C.-L. Ou, Y.-E. Zhang, F.-M. Cho, J.-B. Chang, and C.-
K. Shieh, "BotCluster: A Session-based P2P Botnet Clustering System
on NetFlow," Computer Networks, Volume 145, 9 November 2018, pp.
175-189.

[5] Ester, M., Kriegel, H. P., Sander, J., and Xu, X.. 1996. A density-based
algorithm for discovering clusters in large spatial databases with noise.
In Proceedings of the 2nd ACM International Conference on
Knowledge Discovery and Data Mining (KDD). 226–231.

[6] Campello, R.J.G.B., Moulavi, D., Sander, J. (2013). Density-Based
Clustering Based on Hierarchical Density Estimates. In: Pei, J., Tseng,
V.S., Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge
Discovery and Data Mining. PAKDD 2013. Lecture Notes in
Computer Science(), vol 7819. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-37456-2_14

[7] Rosenberg, Chuck; Hebert, Martial; Schneiderman, Henry (2018).
Semi-Supervised Self-Training of Object Detection Models. Carnegie
Mellon University. Journal contribution.
https://doi.org/10.1184/R1/6560834.v1

[8] Rahbarinia B., Perdisci R., Lanzi A. and Li K., Peerrush “Mining for
unwanted p2p traffic”, Journal of Information Security and
Applications, 2014, pp. 194-208.

[9] Malware Capture Facility Project (2020) – [online] Available at:
https://www.stratosphereips.org/datasets-malware.

[10] P. Torres, C. Catania, S. Garcia, C.G. Garino, “An analysis of
Recurrent Neural Networks for Botnet detection behavior” 2016 IEEE
Biennial Congress of Argentina (ARGENCON), 2016.

[11] N. Koroniotis, N. Moustafa, E. Sitnikova, and J. Slay, "Towards
Developing Network Forensic Mechanism for Botnet Activities in the
IoT Based on Machine Learning Techniques," in International
Conference on Mobile Networks and Management, 2017, pp. 30-44:
Springer..

[12] Abien Fred M. Agarap, " Deep Learning using Rectified Linear Units
(ReLU)", arXiv:1803.08375, 2018.

[13] K. He, X. Zhang, S. Ren and J. Sun, "Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,"
2015 IEEE International Conference on Computer Vision (ICCV),
Santiago, Chile, 2015, pp. 1026-1034, doi: 10.1109/ICCV.2015.123.

[14] Diederik P. Kingma and Jimmy Ba, "ADAM: A Method for Stochastic
Optimization", arXiv:1412.6980, 2014

[15] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., &
Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural
networks from overfitting. The journal of machine learning research,
15(1), 1929-1958.

[16] Rahbarinia B., Perdisci R., Lanzi A. and Li K., Peerrush “Mining for
unwanted p2p traffic”, Journal of Information Security and
Applications, 2014, pp. 194-208.

[17] Malware Capture Facility Project (2020) – [online] Available at:
https://www.stratosphereips.org/datasets-malware.

[18] A. Kumar, N. Kumar, A. Handa, S.K. Shukla “PeerClear: Peer-to-Peer
Bot-net Detection”, International Symposium on Cyber Security
Cryptography and Machine Learning, 2019, pp.279-296.

[19] P. Gahelot, N. Dayal, “Flow Based Botnet Traffic Detection Using
Machine Learning”, Proceedings of ICETIT, 2019, pp.418-426.

[20] C.D. McDermott, F. Majdani, A.V. Petrovski, ” Botnet Detection in the
Internet of Things using Deep Learning Approaches”, 2018
International Joint Conference on Neural Networks (IJCNN), 2018

[21] R.H. Hwang, M.C. Peng, V.L. Nguyen, Y.L. Chang, “An LSTM-Based
Deep Learning Approach for Classifying Malicious Traffic at the
Packet Level” Applied Sciences, 2019.

[22] J. Roosmalen, H. Vranken, M. Eekelen, “Applying Deep Learning on
Packet Flows for Botnet Detection” Symposium on Applied
Computing, 2018.

[23] I. Letteri, G.D. Penna, G.D. Gasperis, “Botnet Detection in Software
Defined Networks by Deep Learning Techniques” International
Symposium on Cyberspace Safety and Security, 2018, pp.49-62.

[24] L.F. MAIMO, ́ A.L.P. G ́ OMEZ, F.J.G. CLEMENTE, M.G. P ́
EREZ,´ AND G.M. PEREZ, “A Self-Adaptive Deep Learning-Based
System for Anomaly Detection in 5G Networks” IEEE Access, 2018,
pp.7700-7712.

[25] A. Pektas ,̧ T. Acarman, ” Botnet detection based on network flow
summary and deep learning” Int J Network Mgmt, 2018.

[26] W. Wang, M. Zhu, X. Zeng, X. Ye, Y. Sheng, ” Malware Traffic

[27] Benchmarking Performance and Scaling of Python Clustering
Algorithms , Sep. 2023, [online] Available:
https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.
html

[28] scikit-learn-contrib, Sep. 2023, [online] Available: http://contrib.scikit-
learn.org/

[29] Classification Using Convolutional Neural Network for Representation
Learning” 2017 International Conference on Information Networking
(ICOIN), 2017, pp.712-717.

[30] Stratosphere IPS. (2020). CTU-13 Dataset — Stratosphere IPS. [online]
Available at: https://www.stratosphereips.org/datasets-ctu13

[31] D. S. Terzi, R. Terzi and S. Sagiroglu, "Big data analytics for network
anomaly detection from netflow data," 2017 International Conference
on Computer Science and Engineering (UBMK), Antalya, Turkey,
2017, pp. 592-597, doi: 10.1109/UBMK.2017.8093473.

[32] Yu, Y., Long, J., Cai, Z. “Session-Based Network Intrusion Detection
Using a Deep Learning Architecture”. Modeling Decisions for
Artificial Intelligence. MDAI 2017. Lecture Notes in Computer
Science, vol 10571. Springer, Cham. https://doi.org/10.1007/978-3-
319-67422-3_13

[33] D. P. Hostiadi, T. Ahmad and W. Wibisono, "A New Approach of
Botnet Activity Detection Model based on Time Periodic Analysis,"
2020 International Conference on Computer Engineering, Network,
and Intelligent Multimedia (CENIM), Surabaya, Indonesia, 2020, pp.
315-320, doi: 10.1109/CENIM51130.2020.9297846.

[34] D. P. Hostiadi and T. Ahmad, "Sliding Time Analysis in Traffic
Segmentation for Botnet Activity Detection," 2022 5th International
Conference on Computing and Informatics (ICCI), New Cairo, Cairo,
Egypt, 2022, pp. 286-291, doi: 10.1109/ICCI54321.2022.9756077.

[35] K. Sinha, A. Viswanathan, and J. Bunn, “Tracking Temporal Evolution
of Network Activity for Botnet Detection,” arXiv.org, Aug. 09, 2019.
https://arxiv.org/abs/1908.03443 (accessed Sep. 21, 2023).

