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Abstract—Within the realm of cybersecurity, botnets 

represent an increasingly formidable threat, characterized by 

diverse types exhibiting distinct behavioral patterns and 

characteristics. This study addresses the imperative need for 

real-time botnet activity detection by introducing a multi-class 

labeling system tailored for real-world network traffic. 

Employing clustering algorithms and a semi-supervised 

learning framework, this system efficiently labels benign traffic 

and performs multi-class labeling for various botnet traffic 

categories. Hierarchical Density-based Spatial Clustering of 

Applications with Noise (HDBSCAN) is harnessed for clustering 

both synthetic and real-world datasets, significantly enhancing 

labeling coverage. The remaining traffic is designated as 

"unknown" and subjected to identification through a semi-

supervised learning approach. A comparative analysis 

underscores the superiority of HDBSCAN over Density-based 

Spatial Clustering of Applications with Noise (DBSCAN), 

successfully clustering an additional 11% of data. Remarkably, 

our system exhibits substantial advancements in data labeling 

when juxtaposed with prior research efforts. This research 

introduces an effective solution for botnet labeling in the context 

of network security, thereby enhancing the capacity for 

detecting and mitigating malicious botnet activities. 

Keywords—Botnet Classification, Clustering algorithm, Data 

labeling, Real-world traffic labeling, Self-learning 

I. INTRODUCTION 

In the field of cybersecurity, botnets pose an escalating 
threat as they house malicious network traffic generated by 
compromised hosts, manipulated by hackers or malware. 
These botnets serve as platforms for large-scale malicious 
operations. Various botnet types exhibit unique behavioral 
patterns. Waledac prompts infected hosts to distribute 
malicious emails with harmful links or attachments, leading to 
further infections. On the other hand, TrickBot operates 
discreetly, clandestinely harvesting login credentials during 
website access. Given the substantial behavioral diversity 
among botnets, it's imperative to categorize and distinguish 
them within real-world traffic effectively. 

In previous studies, researchers have utilized clustering 
algorithms to label real-world traffic. For instance, in [1], 
clustering algorithms were employed to label the traffic 
associated with attack behaviors. However, the classification 
was limited to benign and malicious categories, overlooking 
the variations within malicious behaviors and lacking 
consideration for multi-class cases. Although some studies 
attempted multi-class analysis of real-world network traffic 
using clustering algorithms, these methods focused only on 

specific types of botnet infections, and the labeled data 
accounted for only a small portion of the testing dataset. For 
example, in the study by [2], DBSCAN clustering algorithm 
was used to perform multi-class analysis of IoT-based botnets 
on synthetic datasets and real-world network traffic, but it 
achieved accurate labeling for only 10% of the data, with most 
of the traffic being labeled as malicious without explicit class 
labels. In our team's related research [3], we utilized 
DBSCAN clustering on both real-world traffic and synthetic 
datasets to label P2P botnet traffic, achieving accurate labeling 
for 30% of the botnet traffic. The performance of clustering 
algorithms plays a crucial role in determining the amount of 
accurately labeled data in multi-class botnet classification. In 
previous studies [2, 3], the DBSCAN clustering algorithm 
used could result in clusters containing multiple types of 
botnet infections, leading the researchers to know that the 
traffic within these clusters is malicious but unsure which 
category of botnet it belongs to, resulting in labeling them as 
malicious without specifying the exact class. 

This study aims to provide a multi-class labeling system 
for real-work traffic, capable of labeling various type of botnet 
traffic as well as benign traffic. We propose a two-phase 
botnet labeling system that combines clustering algorithms 
and semi-supervised learning, yielding good results for multi-
class labeling in real-world cases. In the first phase, we 
employ a more suitable clustering algorithm HDBSCAN to 
cluster the synthetic datasets and real-world data, identifying 
traffic similar to botnet activity in the real-world traffic and 
improving the labeling coverage. The remaining real-world 
traffic is labeled as unknown and further identified in the 
second phase. In the second phase, we utilize semi-supervised 
learning methods to train a multi-class model, reducing the 
amount of unknown data. 

We compared the performance of two clustering 
algorithms, HDBSCAN and DBSCAN, and demonstrated that 
HDBSCAN outperforms DBSCAN in clustering by 
accurately clustering an additional 11% of the data. Compared 
to our team's previous research, our system increases the ratio 
of labeled data from 30% to 77% for real-world traffic. 

II. BACKGROUND AND RELATED WORKS 

A. HDBSCAN & DBSCAN 

DBSCAN assumes that the data distribution has the same 
density throughout, which is not applicable in real-world 
network conditions. Therefore, we need to adjust the 
clustering results according to user expectations. Figure 1 
simply illustrates the difference between the two algorithms. 



DBSCAN clusters instances into a group with predefined 
distance value, while HDBSCAN considers the density of data 
in their vicinity. If the density is low, it expands the distance 
between data, while it has minimal effect when high density. 

After careful evaluation, we opted for the HDBSCAN 
clustering algorithm to handle our data. HDBSCAN stands out 
as a robust clustering algorithm tailored for diverse data 
characteristics, encompassing arbitrary shapes, variable sizes 
and densities, and noisy datasets. It adeptly detects and 
analyzes a spectrum of clustering structures, even those that 
are non-convex and non-linear, all while effectively managing 
data noise. An open-source performance assessment[27] 
comparing HDBSCAN to other widely used clustering 
algorithms can be found in the HDBSCAN section of scikit-
learn-contrib[28]. Figure 2 visually illustrates the outcomes of 
this comparison, highlighting HDBSCAN's exceptional 
performance. 

 

Fig. 1. Data distribution 

 

Fig. 2. Performance of clustering algorithms [28] 

B. Self-training 

Both DBSCAN and HDBSCAN have instances of real-
world traffic that remain un-clustered. Furthermore, a portion 
of real-world traffic lacks a definite classification due to the 
presence of multiple synthetic data categories within clusters. 
We employ a self-learning approach to augment the amount 
of data we can label. Self-training [7] is a semi-supervised 
learning approach used to tackle problems with a small 
amount of labeled data and a large amount of unlabeled data. 
The goal of this method is to train a model using known 
labeled data and then use that model to predict and label the 
unlabeled data. This can be particularly useful in situations 
where obtaining a large amount of accurate labeled data is 
difficult or costly. Through augmented, thereby enhancing the 
model's performance. 

Self-training typically comprises these steps: First, an 
initial model is trained with labeled data. This model is then 

applied to unlabeled data, predicting their labels and thus 
generating predicted labels. These predicted labels are 
subsequently incorporated into the labeled dataset, expanding 
it. This augmented dataset is used to train an updated model. 
This iterative process continues until the desired performance 
or label quantity is attained. Self-training's advantage lies in 
its capacity to harness the valuable information within 
unlabeled data, effectively increasing the labeled dataset's 
coverage. This proves especially valuable in scenarios where 
obtaining ample, accurate labeled data is challenging or costly. 
Self-training enables us to maximize the utility of the existing 
limited labeled data, enhancing the model's generalization and 
performance. 

C. Related works 

Numerous studies have concentrated on the detection of 
botnets within specific domains, often employing synthetic 
datasets for training and testing. While these studies have 
achieved favorable results in terms of accuracy and 
correctness, the applicability of these achievements to real-
world traffic labeling warrants investigation. Central to this 
issue is a pivotal question: whether the scenarios simulated by 
synthetic datasets can comprehensively encompass the 
intricate and ever-changing network traffic characteristics of 
the real world. For instance, within these research endeavors, 
we observe certain publications [31-35] opting to employ the 
synthetic dataset of CTU-13 as a benchmark for testing. 
Although these methods have yielded satisfactory outcomes 
on synthetic datasets, it does not imply their seamless 
adaptation to the complex diversity of real-world network 
traffic. The design of synthetic dataset might not fully capture 
the myriad possible scenarios present in the real world, which 
often comes with unforeseeable variations and challenges. 

Some studies have focused on detecting real-world 
network traffic, successfully identifying a portion but leaving 
the rest unlabelled as potential threats. For example, Z. Liu et 
al. [1] developed a method to predict botnet attacks in real-
world traffic based on Command and Control (C2C) activities. 
They used ISP flow data to calculate C2C indicators and 
trained a Long Short-Term Memory (LSTM) model, 
achieving a 0.767 prediction accuracy for binary classification. 
However, this approach did not address the multi-class nature 
of modern botnet attacks, which is crucial given their 
increasing diversity. 

Trajanovski et al. [2] proposed an automated behavior-
based clustering method for Internet of Things (IoT) botnets, 
aiming to identify botnets with new functionalities. The 
method captures the behavior of IoT botnet samples in a 
simulated environment, represents it as behavioral profiles, 
and vectorizes them. Then, DBSCAN algorithm is applied to 
cluster these vectors, enabling automated clustering analysis. 
They constructed a test dataset using IoT botnet samples 
propagated from the Internet and evaluated the method. The 
results showed that the method can accurately identify IoT 
botnets with new functionalities, but it could only identify 
10% of the data, while the remaining was classified as 
malicious traffic. 

In our team's previous research [3], Chen, Wei-Yu et al. 
employed BotCluster[4] to perform clustering on both real-
world data and synthetic datasets. Chen transformed the real-
world data into sessions and used BotCluster in conjunction 
with the synthetic datasets, after removing certain whitelisted 
data. After clustering, if a cluster contained only one category 
of synthetic data, we labeled all the real-world data in that 



cluster as the corresponding category. For other cases, we 
labeled the real-world data as unknown malicious data. We 
also introduced a specific category called the "malicious 
group" to represent traffic that was considered botnet malware 
in previous studies but lacked clear classification. 

 

Fig. 3. [3] labeling method 

III. METHODOLOGY 

A. Workflow 

Figure 4 outlines our Two-phase Data Labeling approach, 
which aims to label benign and multi-class botnet traffic. We 
recognize that directly applying a model trained on synthetic 
data to real-world traffic may lead to misjudgments due to 
domain differences. To address this, we cluster real-world and 
synthetic data to enable the model to learn real-world traffic 
features. This clustering also enhances our labeled dataset for 
effective self-training.  

 

Fig. 4. System workflow 

Additionally, referring to [3], we improve the 
representation of IP address communication by using "Session 
Extraction" on both real-world and synthetic datasets, 
transforming them into sessions. Our Two-phase Data 
Labeling system comprises two phases: Data Clustering for 
labeling real-world traffic resembling synthetic data, and Self-
Labeling for enhancing labels on un-clustered real-world 
traffic and traffic within clusters. 

B. Phase 1 Data Clustering 

In the first phase, we use HDBSCAN to cluster the 
synthetic dataset and real-world traffic, resulting in five 
scenarios. The first combines real-world traffic with multiple 
categories of synthetic data, the second contains synthetic data 
only, possibly encompassing one or multiple categories. The 
third scenario consists solely of real-world traffic, and the 
fourth merges real-world traffic with synthetic data of the 
same category. The fifth scenario includes un-clustered noise 
data. We label real-world traffic within the fourth scenario 
using synthetic data categories. In Figure 6, the left side 
showcases clustering results, where colored dots represent 
various botnet types and white dots denote real-world sessions. 
We then label real-world traffic within the fourth scenario, as 
depicted on the right side of Figure 6. In the second phase, we 

integrate data from the first, third, and fifth scenarios into the 
unlabeled dataset, while the remaining data goes into the 
labeled dataset. A higher proportion of the fourth scenario 
enhances our ability to label genuine network traffic. 

 

Fig. 5. Cluster situation 

 

Fig. 6. Phase 1 labeled example 

Figure 7 illustrates the procedural flow of the data 
clustering phase. Following the clustering of both real-world 
traffic and synthetic data, our initial step entails the 
determination of data labeling status. If data has already been 
labeled, this designation signifies its synthetic origin; 
conversely, unlabeled data is associated with real-world traffic. 
In cases involving synthetic data, we incorporate it into the 
labeled dataset. When dealing with real-world traffic, our 
initial assessment involves verifying whether all synthetic data 
instances within a given cluster correspond to the same 
category, thereby constituting Case 4. In such instances, we 
assign the label of the category as the synthetic data within 
that cluster to the real-world traffic. Subsequently, this labeled 
real-world traffic is included in the labeled dataset. 
Conversely, if synthetic data within a cluster spans multiple 
categories or no synthetic data is present, the real-world traffic 
remains unlabeled within this phase. 

 

Fig. 7. Phase 1 Data Clustering workflow 

C. Phase 2 Self-labeling 

Figure 8 provides a detailed depiction of the self-labeling 
process. In this phase, we employ the previously labeled 



dataset to train a model. Subsequently, we utilize this model 
to predict the unlabeled dataset. If the model exhibits 
confident predictions for the unlabeled data, indicating a 
prediction probability surpassing 90% for a certain category, 
it signifies a high level of confidence in the classification. We 
include this data in the high-confidence dataset and assign it 
the predicted label. Alternatively, if the model's prediction 
lacks confidence, we return the data to the unlabeled dataset. 

 

Fig. 8. Phase 2 Self-labeling workflow 

After evaluating all the data, we verify whether the high-
confidence dataset is empty. If it contains data, we 
amalgamate its contents into the labeled dataset, retrain the 
model, and then repeat the steps. If the high-confidence 
dataset remains empty, the self-labeling process concludes. 
For data that cannot be labeled in either phase, we uniformly 
classify them as an unknown category. 

In our self-training framework, it is applicable if the output 
of the neural network classifier is a probability distribution for 
each category. We utilize a fully connected neural network to 
process sessions, each comprising 20 features. The model 
includes 6 hidden layers with 4096 neurons each. We apply 
standard components such as the Relu activation function [12], 
He normalization [13], Adam optimizer [14], and employ 3 
dropout layers [15] with an initial dropout rate of 0.4 

IV. EXPERIMENTS 

A. Environment 

We finish our experiment in a personal computer. The 
CPU is Intel(R) Core (TM) i7-9700 CPU @ 3.00GHz, 
memory size is 32 GB, the storage space is 8 TB, and the GPU 
is NVIDIA GeForce RTX 2080 SUPER. 

B. Dataset 

The dataset can divide into two categories, which are the 
synthetic dataset, and the real-world traffic dataset. 

Synthetic Dataset: Nine distinct botnet types of synthetic 
datasets were assembled for this study. The Storm and 
Waledac datasets were obtained from the PeerRush [8] dataset, 
while the remaining benign and seven botnet types were 
sourced from the Malware Capture Facility Project [9], 
generously provided by CTU University of Prague in the 
Czech Republic. Data collection for these datasets occurred 
over the period spanning 2013 to 2018. Additionally, we 
leveraged the widely acknowledged CTU-13 dataset, which 
encompasses 13 unique scenarios, inclusive of seven botnet 
traffic types and benign traffic. Detailed information 
regarding these datasets can be found in Table 1 and Table 2. 
The relatively balanced dataset from Table 1 served as the 

basis for contrasting HDBSCAN and DBSCAN 
methodologies, as well as evaluating our approach against the 
BotCluster multi-class labeling method. Meanwhile, the 
dataset in Table 2 was employed for comparative analysis with 
other research contributions. 

Real-world Dataset: Table 3 shows the detail of the real-
world NetFlow comes from National Cheng Kung University 
(NCKU) on the TWAREN (Taiwan Advanced Research and 
Education Network). We used the data from December 2019 
as our real-world traffic data. 

TABLE I.  MCFP & PEERRUSH DATASET 

Class From Year Sessions Flows 

Benign MCFP 2016-2017 571,278 1,107,246 

Storm PeerRush 2013 57,448 113,972 

Wisdomeyes MCFP 2016-2017 59,639 122,344 

Tinba MCFP 2015-2016 58,393 118,018 

Waledac PeerRush 2013 61,370 121,737 

Amy MCFP 2016 53,629 126,042 

TrickBot MCFP 2017-2018 59,431 119,703 

Emotet MCFP 2015-2017 53,828 76,967 

Papras MCFP 2017-2018 58,388 116,612 

Netsky MCFP 2015-2016 54,984 104,322 

TABLE II.  CTU-13 DATASET 

ID Packets NetFlow Sessions Bot 

1 71,971,482 2,824,637 2,049,540 Neris 

2 71,851,300 1,808,123 1,437,934 Neris 

3 167,730,395 4,710,639 3,921,631 Robt 

4 62,089,135 1,121,077 1,098,708 Rbot 

5 4,481,167 129,833 109,403 Virut 

6 38,764,357 558,920 498,137 Menti 

7 7,467,139 114,078 103,258 Sogou 

8 155,207,799 2,954,231 2,555,343 Murlo 

9 115,415,321 2,753,885 2,447,096 Neris 

10 90,389,782 1,309,792 1,078,324 Rbot 

11 6,337,202 107,252 102,344 Rbot 

12 13,212,268 325,472 319,633 NSIS.ay 

13 50,888,256 1,925,150 1,403,292 Virut 

TABLE III.  REAL-WORLD DATASET 

From Year Sessions Flows 

NCKU 2019 500,106 1,072,501 

C. Experiment 1 Minimum Cluster Size 

In the first experiment, we conducted tests on different 
minimum cluster size of the HDBSCAN clustering algorithm. 
Figure 9 illustrates the result. The x-axis represents the values 
of different min cluster size, while the y-axis represents the 
ratio of labeled data to the time spent on clustering. Our goal 
is to achieve more labeled data while minimizing the time 
spent on clustering. Ultimately, we selected the parameter 
value of 45 as our HDBSCAN parameter setting. 

 

Fig. 9. Minimum cluster size 



D. Experiment 2 HDBSCAN vs DBSCAN 

Figure 10 represents our Experiment 2, where we initially 
divide the synthetic dataset into three phases: the training 
dataset, the Imitate real dataset, and the Validation dataset. 
The training dataset contains labeled data that is known to us, 
while the Imitate real dataset has the labels removed, 
simulating our lack of knowledge about the true labels of those 
data. The testing dataset is used to evaluate the usability of the 
data labeled by our method. 

 

Fig. 10. HDBSCAN vs DBSCAN 

We remove the labels from the Imitate real dataset and 
then conduct Two-phase Data Labeling or DBSCAN + Self-
labeling together with the training data to generate Labeled 
datasets. Once obtain the Labeled datasets, we compare the 
quantities of Imitated real data that these two methods labeled. 
Additionally, the Labeled data labeled by both methods will 
be utilized to train one neural network model. We will employ 
validation data to compare the differences in F1-score among 
these models, serving as an indicator to evaluate the usability 
of our labeled data. 

The experimental results (Table 4 and 5) show that 
HDBSCAN + Self-labeling can label 77% of the Imitate real 
data, while DBSCAN + Self-labeling can only label 66% of 
the data. In terms of performance comparison, the two-phase 
method performs better in each metrics. 

TABLE IV.  AMOUNT OF LABELING DATA 

Model Labeled imitate data 

Two-phase 77% 

DBSCAN + Self-labeling 66% 

TABLE V.  MODELS COMPARISON 

Model Acc Precision Recall F1-score 

Two-phase 86% 93% 83% 85% 

DBSCAN + Self-labeling 73% 68% 82% 72% 

E. Experiment 3 Two-phase vs previous work 

Figure 11 illustrates the process of Experiment 3. We 
utilized synthetic datasets and real network traffic, applying 
both our two-phase data labeling and previous work[3] to label 
the real network traffic, thus generating a labeled dataset of 
real traffic. Our evaluation focus lies in comparing how much 
additional data we can label and the extent of overlap between 
this data and the labels assigned by our system. 

Figure 12 showcases the respective quantities of real 
network data that they can label. The left circle represents the 

amount of real network traffic that BotCluster can label, and 
the right circle represents the quantity labeled in the first phase 
of the two-phase data labeling. Figure 13 displays the amounts 
of real network traffic labeled by BotCluster and the complete 
two-phase data labeling method. In comparison, our method 
increases the labeled data quantity from 30% to 77% and 
demonstrates a 25.3% data overlap. 

 

Fig. 11. Two-phase labeling V.S BotCluster multiclass labeling 

 

Fig. 12. Amount of  labeled real-world data comparison (Phase 1) 

 

Fig. 13. Amount of  labeled real-world data comparison 

F. Experiment 4 Comparison with related work 

Table 6 provides a comprehensive comparison between 
our methodology and prior research endeavors, as delineated 
in references [31-35]. To evaluate the efficacy of our approach, 
we conducted experiments utilizing the synthetic dataset from 
CTU-13, as outlined in Table 2. The dataset was partitioned 
into two equal subsets: 50% for training and 50% for testing. 
Subsequently, we employed a standardized performance 
matrix to gauge disparities among these methodologies. As 
discerned in Table 6, our approach exhibits exemplary 
performance across a spectrum of metrics. 

TABLE VI.  CONFUSION MATRIXES COMPARE WITH OTHERS WORK 

Method Accuracy Precision Recall F1-score 

[31] 0.966 0.833 0.723 0.774 

[32] 0.995 0.993 0.994 0.994 

[33] 0.979 0.727 0.978 N/A 

[34] 0.979 0.727 1.0 0.83 

[35] 0.962 N/A 0.946 N/A 

Two-phase 0.999 0.998 0.989 0.994 

V. CONCLUSION 

Different types of botnets exhibit distinct behavior 
patterns and characteristics. To achieve real-time detection, it 



is necessary to categorize these botnets into subgroups and 
label the malicious and benign traffic within the real-world 
traffic. We propose a multi-class two-phase botnet labeling 
system which combines clustering algorithms and semi-
supervised learning for real-world traffic that can label real-
world botnets traffic, as well as benign traffic. In the first 
phase, we utilize HDBSCAN to cluster synthetic datasets and 
real-world data, thereby labeling traffic like botnet behavior 
and improving labeling coverage. The remaining real-world 
traffic is labeled as unknown and subjected to identification in 
the second phase. In this phase, we employ semi-supervised 
learning techniques to build a multi-class model and reduce 
the amount of unknown data. 

After comparing the effectiveness of HDBSCAN and 
DBSCAN, we demonstrated that HDBSCAN performs better 
in clustering botnet traffic, achieving 11% higher accuracy in 
clustering data. Furthermore, our system shows significant 
improvement in data labeling compared with previous work. 
This research provides an effective solution for labeling botnet 
in the field of network security, aiding in the detection and 
prevention of malicious activities in botnets. 
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